Advertisement

Measuring TE1 mode Losses in Terahertz Parallel-Plate Waveguides

  • Marx Mbonye
  • Rajind Mendis
  • Daniel M. Mittleman
Article

Introduction

The parallel-plate waveguide (PPWG) has drawn considerable research interest [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], since it was first reported to support the undistorted propagation of broadband terahertz (THz) pulses. From that time, the transverse-electromagnetic (TEM) mode of the PPWG has been the popular choice for measurements due to its low loss, ease of quasi-optic coupling, and negligible dispersion as a result of the lack of a cutoff. Unlike the TEM mode, the lowest order transverse-electric (TE1) mode has a cutoff frequency, and thus this mode was largely unexplored in the THz regime until recently [13, 14]. This recent work showed that the cutoff frequency could be moved to lower frequencies to reduce the dispersion by increasing the plate separation, while matching the input beam size to the plate separation to realize dominantly single-mode propagation. This same work predicted the possibility of realizing ultra-low ohmic losses in the dB/km range by again...

Keywords

Diffraction Loss Energy Confinement Plate Separation Output Facet Broadband Terahertz 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by the National Science Foundation and by the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice University (LANCER).

References

  1. 1.
    R. Mendis and D. Grishkowsky, Opt. Lett. 26, 846-848 (2001).CrossRefGoogle Scholar
  2. 2.
    R. Mendis and D. Grischkowsky, IEEE Microw. Wireless Compon. Lett. 11, 444-446 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Cao, R. A. Linke, and Ajay Nahata, Opt. Lett. 29, 1751-1753 (2004).Google Scholar
  4. 4.
    S. Coleman and D. Grischkowsky, Appl. Phys. Lett. 84, 654-656 (2004).CrossRefGoogle Scholar
  5. 5.
    Z. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067-2069 (2004).CrossRefGoogle Scholar
  6. 6.
    J. Zhang and D. Grischkowsky, Opt. Lett. 29, 1617-1619 (2004).CrossRefGoogle Scholar
  7. 7.
    M. M. Awad and R. A. Cheville, Appl. Phys. Lett. 86, 221107 (2005).CrossRefGoogle Scholar
  8. 8.
    J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, Appl. Phys. Lett. 89, 252220 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Nagel, M. Forst, and H. Kurz, J. Phys.: Condens. Matter. 18, S601-S618 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Zhao and D. Grischkowsky, IEEE Trans. Microw. Theory Tech. 55, 656-663 (2007).CrossRefGoogle Scholar
  11. 11.
    D. G. Cooke and P. U. Jepsen, Opt. Exp. 16, 15123-15129 (2008).CrossRefGoogle Scholar
  12. 12.
    N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, Biophys. J. 94, 1010-1020 (2008).CrossRefGoogle Scholar
  13. 13.
    R. Mendis and D. M. Mittleman, J. Opt. Soc. Am. B 26, A6-A13 (2009).CrossRefGoogle Scholar
  14. 14.
    R. Mendis and D. M. Mittleman, Opt. Exp. 17, 14839-14850 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Mbonye, R. Mendis, and D.M. Mittleman, Opt. Exp. 20, 27800-27809 (2012).CrossRefGoogle Scholar
  16. 16.
    D. M. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2002).Google Scholar
  17. 17.
    B. Bowden, J. A. Harrington, and O. Mitrofanov, Opt. Lett. 32, 2945-2947 (2007).CrossRefGoogle Scholar
  18. 18.
    T. A. Abele, D. A. Alsberg, and P. T. Hutchison, IEEE Trans. Microw. Theory Tech. 23, 326-333 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marx Mbonye
    • 1
  • Rajind Mendis
    • 1
  • Daniel M. Mittleman
    • 1
  1. 1.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA

Personalised recommendations