Advertisement

Analysis of Aftercavity Interaction in European ITER Gyrotrons and in the Compact Sub-THz Gyrotron FU CW-CI

  • Olgierd Dumbrajs
  • Toshitaka Idehara
Article

Abstract

Possibilities of arising of aftercavity interaction are analyzed in the ITER 170 GHz 2 MW coaxial cavity gyrotron and the 170 GHz 1 MW cylindrical cavity gyrotron, as well as in the compact 394.5 GHz low power gyrotron FU CW-CI. Also, the simulations for the gyrotron efficiency in the presence of aftercavity interaction are performed in the cold cavity approximation. Results of the analysis illustrate the subtle interplay between the geometry of the output taper and the profile of the magnetic field.

Keywords

Gyrotron ITER DNP-NMR spectroscopy 

References

  1. 1.
    V.E. Zapevalov and M.A. Moiseev, Radiophys. Quantum Electron. 47, 520 (2004).CrossRefGoogle Scholar
  2. 2.
    N.A. Zavolsky, V.E. Zapevalov, and M.A. Moiseev, Radiophys. Quantum Electron. 49, 108 (2006).CrossRefGoogle Scholar
  3. 3.
    E.M. Choi, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, Phys. Plasmas 14, 093302 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Hidaka, E.M. Choi, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, Conference Proceedings, IVEC 2008, IEEE International Conference on Vacuum Electronics, Monterey, California, USA, April 22-24, 2008.Google Scholar
  5. 5.
    Y. Hidaka, E.M. Choi, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, Conference Proceedings, 33rd International Conference on Infrared Millimeter THz Waves, Pasadena, California, USA, September 15-19, 2008.Google Scholar
  6. 6.
    S. Kern and E. Borie, Conference Proceedings, 33rd International Conference on Infrared Millimeter THz Waves, Pasadena, California, USA, September 15-19, 2008.Google Scholar
  7. 7.
    S.R. Cauffman, Conference Proceedings, 33rd International Conference on Infrared Millimeter THz Waves, Pasadena, California, USA, September 15-19, 2008.Google Scholar
  8. 8.
    O.V. Sinitsyn and G.S. Nusinovich, Phys. Plasmas 16, 023101 (2009).CrossRefGoogle Scholar
  9. 9.
    O.V. Sinitsyn, G.S. Nusinovich, and T.M. Antonsen, Jr., Phys. Plasmas 17, 083106 (2010).CrossRefGoogle Scholar
  10. 10.
    R. Pu, G.S. Nusinovich, O.V. Sinitsyn, and T.M. Antonsen, Jr., Phys. Plasmas 18, 023107 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Kern, K.A. Avramides, A.R. Choudhury, O. Dumbrajs, G. Gantenbein, S. Illy, A. Samartsev, A. Schlaich and M. Thumm, Conference Proceedings, 35th International Conference on Infrared Millimeter THz Waves, Rome, Italy, September 5-10, 2010.Google Scholar
  12. 12.
    A. Schlaich, A.R. Choudhury, G. Gantenbein, S. Illy, S. Kern, C. Lievin, A Samartsev and M. Thumm, Conference Proceedings, 36th International Conference on Infrared Millimeter THz Waves, Houston, Texas, USA, October 2-7, 2011.Google Scholar
  13. 13.
    O. Dumbrajs, M.Yu. Glyavin, V.E. Zapevalov, and N.A. Zavolsky, IEEE Trans. Plasma Sci. 28, 588 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Gantenbein, T. Rzesnicki, B. Piosczyk, S. Kern, S. Illy, J. Jin, A. Samartsev, A. Schlaich, and M. Thumm, 23rd IAEA Fusion Energy Conference, Daejon, Korea, 11-16 October 2010, ITR/2-5Rc, p. 517.Google Scholar
  15. 15.
    T. Idehara, J.C. Mudiganti, La Agusu, T. Kanemaki, I. Ogawa, T. Fujiwara, Y. Matsui, and K. Ueda, J. Infrared Millimeter and Terahertz Waves 13, 724 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  2. 2.Research Center for Development of Far-Infrared RegionUniversity of Fukui (FIR FU)Fukui-shiJapan

Personalised recommendations