Advertisement

Low-loss Transmission Lines for High-power Terahertz Radiation

  • Emilio Alessandro Nanni
  • Sudheer Kumar Jawla
  • Michael A. Shapiro
  • Paul P. Woskov
  • Richard J. Temkin
Article

Abstract

Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

Keywords

Terahertz High power Transmission line Waveguide Gyrotron 

Notes

Acknowledgements

This work is supported by the NIH and NIBIB under the Contracts R01-EB004866 and R01-EB001965 and by the US ITER Project managed by Battelle/Oak Ridge National Laboratory.

References

  1. 1.
    P.P. Woskov, V.S. Bajaj, M.K. Hornstein, R.J. Temkin, R.G. Griffin, IEEE Transactions on Microwave Theory and Techniques, 53(6), 1863 (2005)CrossRefGoogle Scholar
  2. 2.
    P.P. Woskov, M.K. Hornstein, R.J. Temkin, in The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, vol. 2 (2005), pp. 563–564Google Scholar
  3. 3.
    E. de Rijk, A. Macor, J.P. Hogge, S. Alberti, J.P. Ansermet, Rev. Sci. Instrum. 82(6), 066102 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Denisov, A. Chirkov, V. Belousov, A. Bogdashov, G. Kalynova, D. Sobolev, Y. Rodin, E. Tai, V. Ilin, S. Kornishin, M. Kulygin, V. Malygin, E. Soluyanova, V. Parshin, M. Shmelev, Journal of Infrared, Millimeter and Terahertz Waves 32(3), 343 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Bogdashov, V. Belousov, A. Chirkov, G. Denisov, V. Korchagin, S. Kornishin, E. Tai, Journal of Infrared, Millimeter and Terahertz Waves 32(6), 823 (2011)CrossRefGoogle Scholar
  6. 6.
    P. Woskov, E. Nanni, M. Shapiro, S. Jawla, J. Hummelt, R. Temkin, A. Barnes, in 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), (2011)Google Scholar
  7. 7.
    V.P. Denysenkov, M.J. Prandolini, A. Krahn, M. Gafurov, B. Endeward, T.F. Prisner, Applied Magnetic Resonance 34(3), 289 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Idehara, K. Kosuga, L. Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, Journal of Infrared, Millimeter and Terahertz Waves 31(7), 775 (2010)CrossRefGoogle Scholar
  9. 9.
    K.R. Thurber, W.M. Yau, R. Tycko, J. Mag. Res. 204(2), 303 (2010)CrossRefGoogle Scholar
  10. 10.
    B.D. Armstrong, D.T. Edwards, R.J. Wylde, S.A. Walker, S. Han, Physical Chemistry Chemical Physics 12(22), 5920 (2010)CrossRefGoogle Scholar
  11. 11.
    P.A.S. Cruickshank, D.R. Bolton, D.A. Robertson, R.I. Hunter, R.J. Wylde, G.M. Smith, Rev. Sci. Instrum. 80(10), 103102 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Ohkubo, S. Kubo, H. Idei, M. Sato, T. Shimozuma, Y. Takita, International Journal of Infrared and Millimeter Waves 18(1), 23 (1997)CrossRefGoogle Scholar
  13. 13.
    P. Bhartia, I. Bahl, Millimeter Wave Engineering and Applications (John Wiley and Sons, Inc., New York, NY, 1984)Google Scholar
  14. 14.
    M.K. Thumm, W. Kasparek, IEEE Transactions on Plasma Science, 30(3), 755 (2002)CrossRefGoogle Scholar
  15. 15.
    R.W. Callis, W.P. Cary, R. Ellis, Y.A. Gorelov, H.J. Grunloh, J. Lohr, J.J. Peavy, R.I. Pinsker, D. Ponce, R. Prater, in The 29th IEEE International Conference on Plasma Science, (2002), p. 294Google Scholar
  16. 16.
    F. Leuterer, M. Beckmann, H. Brinkschulte, F. Monaco, M. Münich, F. Ryter, H. Schütz, L. Empacher, G. Gantenbein, W. Förster, W. Kasparek, P. Schüller, K. Schwörer, A. Borchegowski, A. Fix, V. Illin, L. Popov, V. Sigalaev, E. Tai, Fusion Engineering and Design 53(1–4), 485 (2001)CrossRefGoogle Scholar
  17. 17.
    H. Idei, S. Kubo, T. Shimozuma, M. Sato, K. Ohkubo, Y. Yoshimura, Y. Takita, S. Kobayashi, S. Ito, Y. Mizuno, K. Tsumori, K. Ikeda, T. Notake, T. Watari, O. Kaneko, A. Komori, H. Yamada, P.C. de Vries, M. Goto, K. Ida, S. Inagaki, S. Kado, K. Kawahata, T. Kobuchi, T. Minami, J. Miyazawa, T. Morisaki, S. Morita, S. Murakami, S. Muto, Y. Nagayama, H. Nakanishi, K. Narihara, B.J. Peterson, S. Sakakibara, H. Sasao, K. Sato, K. Tanaka, Y. Takeiri, K.Y. Watanabe, I. Yamada, O. Motojima, M. Fujiwara, Fusion Engineering and Design 53(1–4), 329 (2001)CrossRefGoogle Scholar
  18. 18.
    J.L. Doane, Fusion Science and Technology 53, 159 (2008)Google Scholar
  19. 19.
    J.L. Doane, R.A. Olstad, Fusion Science and Technology 53(1), 39 (2008)Google Scholar
  20. 20.
    F. Gandini, et al., Fusion Science and Technology 59(4), 709 (2011)Google Scholar
  21. 21.
    E. Choi, M. Shapiro, J. Sirigiri, R. Temkin, Journal of Infrared, Millimeter and Terahertz Waves 30(1), 8 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Dragone, IEEE Transactions on Microwave Theory and Techniques, 28(7), 704 (1980)CrossRefGoogle Scholar
  23. 23.
    J.L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides”, Infrared and millimeter waves (Academic Press, Inc. Orlando, FL) vol. 13 (A86-37151 17-33) (1985), pp. 123–170Google Scholar
  24. 24.
    O. Mitrofanov, R. James, F.A. Fernandez, T.K. Mavrogordatos, J.A. Harrington, IEEE Transactions on Terahertz Science and Technology, 1(1), 124 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Gallot, S.P. Jamison, R.W. McGowan, D. Grischkowsky, J. Opt. Soc. Am. B 17(5), 851 (2000)CrossRefGoogle Scholar
  26. 26.
    O. Mitrofanov, J.A. Harrington, Opt. Express 18(3), 1898 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Mendis, D. Grischkowsky, J. Appl. Phys. 88, 4449 (2000)CrossRefGoogle Scholar
  28. 28.
    L.J. Chen, H.W. Chen, T.F. Kao, J.Y. Lu, C.K. Sun, Opt. Lett. 31(3), 308 (2006)CrossRefGoogle Scholar
  29. 29.
    K. Wang, D.M. Mittleman, Nature 432(7015), 376 (2004)CrossRefGoogle Scholar
  30. 30.
    R. Mendis, D.M. Mittleman, J. Opt. Soc. Am. B 26(9), A6 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Hassani, A. Dupuis, M. Skorobogatiy, Opt. Express 16(9), 6340 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Goto, A. Quema, H. Takahashi, S. Ono, N. Sarakura, Japanese Journal of Applied Physics 43(2B), 317 (2004)CrossRefGoogle Scholar
  33. 33.
    B. Bowden, J.A. Harrington, O. Mitrofanov, Applied Physics Letters 93(18), 181104 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Oosterbeek, A. Bürger, E. Westerhof, d.M. Baar, v.d.M. Berg, W. Bongers, M. Graswinckel, B. Hennen, O. Kruijt, D. Thoen, R. Heidinger, S. Korsholm, F. Leipold, S. Nielsen, Rev. Sci. Instrum. 79(9), 093503 (2008)CrossRefGoogle Scholar
  35. 35.
    W.A. Bongers, et al., Fusion Science and Technology 55(2), 188 (2009)Google Scholar
  36. 36.
    M. Henderson, et al., Nuclear Fusion 48(5), 054013 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Rowan, M. Austin, J. Beno, R. Ellis, R. Feder, A. Ouroua, A. Patel, P. Phillips, Rev. Sci. Instrum. 81(10), 10D935 (2010)CrossRefGoogle Scholar
  38. 38.
    M. Austin et al., in Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA (2009), pp. 170–177Google Scholar
  39. 39.
    G.R. Hanson, J.B. Wilgen, T.S. Bigelow, S.J. Diem, T.M. Biewer, Rev. Sci. Instrum. 81, 10D920 (2010)CrossRefGoogle Scholar
  40. 40.
    E.A. Nanni, A.B. Barnes, R.G. Griffin, R.J. Temkin, IEEE Transactions on Terahertz Science and Technology, 1(1), 145 (2011)CrossRefGoogle Scholar
  41. 41.
    M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, IEEE Transactions on Electron Devices, 52(5), 798 (2005)CrossRefGoogle Scholar
  42. 42.
    V. Bajaj, C. Farrar, M. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K. Kreischer, R. Temkin, R. Griffin, J. Mag. Res. 160, 85 (2003)CrossRefGoogle Scholar
  43. 43.
    A.C. Torrezan, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, R.G. Griffin, IEEE Transactions on Electron Devices, 58(8), 2777 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P.M. Borchard, S.R. Cauffman, K.L. Felch, R.T. Weber, R.J. Temkin, R.G. Griffin, W.E. Maas, Physical Chemistry Chemical Physics 12(22), 5850 (2010)CrossRefGoogle Scholar
  45. 45.
    I. Ogawa, T. Idehara, M. Pereyaslavets, W. Kasparek, International Journal of Infrared and Millimeter Waves 20(4), 543 (1999)CrossRefGoogle Scholar
  46. 46.
    E.J. Kowalski, D.S. Tax, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, T.S. Bigelow, D.A. Rasmussen, IEEE Transactions on Microwave Theory and Techniques, 58(11), 2772 (2010)CrossRefGoogle Scholar
  47. 47.
    J.L. Doane, C.P. Moeller, International Journal of Electronics 77(4), 489 (1994)CrossRefGoogle Scholar
  48. 48.
    E.A. Nanni, A.B. Barnes, Y. Matsuki, P.P. Woskov, B. Corzilius, R.G. Griffin, R.J. Temkin, J. Mag. Res. 210(1), 16 (2011)CrossRefGoogle Scholar
  49. 49.
    I. Ogawa, T. Idehara, M. Myodo, H. Ando, D. Wagner, M. Thumm, in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, (2006), pp. 552–552Google Scholar
  50. 50.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Physical Chemistry Chemical Physics 12(22), 5799 (2010)CrossRefGoogle Scholar
  51. 51.
    R.J. Temkin, A.B. Barnes, R.G. Griffin, S. Jawla, E. Nanni, A.C. Torrezan, in Third International Symposium on Dynamic Nuclear Polarization (2011)Google Scholar
  52. 52.
    R. Temkin, A. Barnes, R. Griffin, S. Jawla, I. Mastovsky, E. Nanni, M. Shapiro, A. Torrezan, P. Woskov, in 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), (2011)Google Scholar
  53. 53.
    P.J.B. Clarricoats, A.D. Olver, Corrugated horns for microwave antennas. IEEE Electromagnetic Waves Series (London, U.K.: Peter Peregrinus, 1984)Google Scholar
  54. 54.
    P.J.B. Clarricoats, A.D. Olver, S.L. Chon, Institution of Electrical Engineers, Proceedings 122(11), 1173 (1975)CrossRefGoogle Scholar
  55. 55.
    B. Plaum, E. Holzhauer, C. Lechte, Journal of Infrared, Millimeter and Terahertz Waves pp. 1–14 (2011)Google Scholar
  56. 56.
    S.K. Jawla, E.A. Nanni, M.A. Shapiro, P.P. Woskov, R.J. Temkin, Mode content determination of terahertz corrugated waveguides using experimentally measured radiated field patterns, IEEE Transactions on Plasma Science (2012)Google Scholar
  57. 57.
    S. Jawla, J.P. Hogge, S. Alberti, T. Goodman, B. Piosczyk, T. Rzesnicki, IEEE Transactions on Plasma Science, 37(3), 414 (2009)CrossRefGoogle Scholar
  58. 58.
    E.J. Kowalski, E.A. Nanni, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, T.S. Bigelow, D.A. Rasmussen, in IEEE International Vacuum Electronics Conference (IVEC), (2010), pp. 335–336Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Emilio Alessandro Nanni
    • 1
  • Sudheer Kumar Jawla
    • 1
  • Michael A. Shapiro
    • 1
  • Paul P. Woskov
    • 1
  • Richard J. Temkin
    • 1
  1. 1.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations