Study on Nonlinear Theory and Code of Beam-Wave Interaction for Gyroklystron

  • Guo Jianhua
  • Yu Sheng
  • Li Xiang
  • Li Hongfu


A nonlinear self-consistent theory of beam-wave interaction for gyroklystron with multiple cavities is analyzed in this paper. The electron motion equations and transient electromagnetic field equations in a complex form are deduced in detail. A calculation code including a time-dependent description of the electromagnetic fields and a self-consistent analysis of the electrons is designed and the corresponding software implementation is achieved using Fortran language. An example is presented for the operation of the code, namely a four-cavity, Ka-band gyroklystron operating in the TE011 mode at the fundamental of the cyclotron frequency. The numerical results show that a maximal saturated peak output power of 330 kW, corresponding to 39% efficiency and a saturated 3-dB bandwidth of 325 MHz is achieved with a 72.8 kv, 11.8 A electron beam at a focused magnetic field of 13 kG and a beam velocity ratio of 1.63 when the speed spread is 5%. By comparison, the numerical results agree with the experimental results.


Gyroklystron Beam-wave interaction Nonlinear theory 


  1. 1.
    Wang Jianxun, Luo Yong, Xu Yong, Li Hongfu. Theoretical and numerical investigation of a four-cavity TE021-mode gyroklystron [J]. Int J Infrared Milliwaves, 2008, 29:1113–1122.CrossRefGoogle Scholar
  2. 2.
    Wu Hao,R. L. Lion,A. H. McCurdy. PIC code simulation of pulsed radiation in a tapered closed-cavity gyrotron [J]. IEEE Trans.on Plasma Science, 1996, 24(3):606–612.CrossRefGoogle Scholar
  3. 3.
    Zhao Qing, DONG Aixiang, Li Hongfu, Luo Yong, Wu Xiqiao, Liu Shenggang. Numerical simulation study of double-beam magnetron injection guns for high-power gyrotrons [J]. IEEE Trans.on Plasma Science, 2007, 35(2):402–406.CrossRefGoogle Scholar
  4. 4.
    C. L. Kory. Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA [J]. IEEE Trans.on Electron Devices, 1996, 43(8): 1317–1319.CrossRefGoogle Scholar
  5. 5.
    S. Y. Cai, T. M. Jr. Antonsen, G. Saraph, B. Levush. Multifrequency theory of high power gyrotron oscillators [J]. International Journal of Electronics, 1992, 72(5):759–777.CrossRefGoogle Scholar
  6. 6.
    A. N. Vlasov, T. M. Antonsen. Numerical solution of fields in lossy structures using MAGY [J]. IEEE Trans.on Electron Devices, 2001, 48(1): 45–55.CrossRefGoogle Scholar
  7. 7.
    G. P. Saraph, W. Lawson, M. Castle, J. Cheng, J. P. Calame, G. S. Nusinovich. 100–150 MW Designs of Two- and Three-Cavity Gyroklystron Amplifiers Operating at the Fundamental and Second Harmonics in X- and Ku-Bands [J]. IEEE Trans.on Plasma Science, 1996, 24(3):671–677.CrossRefGoogle Scholar
  8. 8.
    G. S. Nusinovich. Introduction to the Physics of Gyrotrons [M]. Baltimore and London, The Johns Hopkins University Press, 2004:21–42.Google Scholar
  9. 9.
    J. M. Neilson, P. E. Latham, M. Caplan, W. G. Lawson. Determination of the Resonant Frequencies in a Complex Cavity Using the Scattering Matrix Formulation [J]. IEEE Trans.on Microwave theory and techniques, 1989, 37(8): 1165–1170.CrossRefGoogle Scholar
  10. 10.
    Li Hongfu, Xie Zhonglian, Wang Wenxiang, Luo Yong, Du Pingzhong, Deng Xue, Wang Huajun, Yu Sheng, Niu Xinjian, Wang Li, Liu Shenggang. A 35-GHz Low-Voltage Third-Harmonic Gyrotron With a Permanent Magnet System [J]. IEEE Trans.on Plasma Science, 2003, 31(2):264–271.CrossRefGoogle Scholar
  11. 11.
    J. J. Choi, A. H. McCurdy, F. N. Wood, R. H. Kyser, J. P. Calame, K. T. Nguyen, B. G. Danly, T. M. Jr. Antonsen, B. Levush, R. K. Parker Experimental investigation of a high power, two-cavity, 35 GHz Gyroklystron amplifier [J]. IEEE Trans.on Plasma Science, 1998, 26(3): 416–425.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research Institute of High Energy Electronics University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations