A Method of Calibration of Terahertz Wave Brightness Under Nonlinear-Optical Detection

  • G. Kh. Kitaeva
  • S. P. Kovalev
  • A. N. Penin
  • A. N. Tuchak
  • P. V. Yakunin


A new method is proposed for calibration of the terahertz wave spectral brightness. The method is based on the use of quantum and thermal field fluctuations as intrinsic references under nonlinear-optical detection. Both effective brightness of the thermal fluctuations and temperature of the laser-pumped nonlinear-optical crystal can be measured absolutely within the calibration procedure also. It is shown that the accuracy of the terahertz wave brightness calibration is strongly dependent on the value of the terahertz wave losses in the nonlinear-optical crystal. The scheme of quasi-phase matched terahertz wave detection in periodically poled lithium niobate is considered. Dispersion of the absorption coefficient in the terahertz frequency range is measured by a three-frequency interference method under spontaneous parametric down-conversion for nominally pure and Mg-doped lithium niobate crystals. The influence of the terahertz radiation losses in Mg-doped lithium niobate crystals is estimated.


Terahertz detection Radiance calibration Spontaneous parametric conversion Spectral brightness Terahertz absorption 



The authors thank Dr. Maria Chekhova for useful discussion. This work was supported by the Federal Agency of Science and Innovations of the Russian Federation (state contract No. 02.740.11.0223) and the Russian Foundation for Basic Research (project Nos. 10-02-00427, 08-02-00555a, and 09-02-92003).


  1. 1.
    D.L. Woolard, R. Brown, M. Pepper, M. Kemp, Proc. IEEE 93, 1722 (2005).CrossRefGoogle Scholar
  2. 2.
    E. Pickwell, V.P. Wallace, J. Phys. D: Appl. Phys. 39, R301 (2006).CrossRefGoogle Scholar
  3. 3.
    F. Sizov, A. Rogalski, Prog. Quant. Electron., 34, 278 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Nahata, A.S. Weling, and T.F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).CrossRefGoogle Scholar
  5. 5.
    K. Reimann, R.P. Smith, A.M. Weiner, T. Elsaesser, and M. Woerner, Opt. Lett. 28, 471 (2003).CrossRefGoogle Scholar
  6. 6.
    G. Kh. Kitaeva, S. P. Kovalev, I. Naumova, R.A. Akhmedzhanov, I.E. Ilyakov, B.V. Shishkin, E.V. Suvorov, Appl. Phys. Lett. 96, 071106 (2010).CrossRefGoogle Scholar
  7. 7.
    H. Cao, A. Nahata, Appl. Phys. Lett. 88, 011101 (2006).CrossRefGoogle Scholar
  8. 8.
    R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, Appl. Phys. Lett. 93, 021106 (2008).CrossRefGoogle Scholar
  9. 9.
    G.Kh. Kitaeva, A.N. Penin, A.N. Tuchak, Opt. Spectrosc. 107, 521 (2009).CrossRefGoogle Scholar
  10. 10.
    D.N. Klyshko, Sov. J. Quantum Electron. 7, 591 (1977).CrossRefGoogle Scholar
  11. 11.
    G.Kh. Kitaeva, A.N. Penin, V.V. Fadeev, Yu.A.Yanait, Sov. Phys. Dokl. 24, 564 (1979).Google Scholar
  12. 12.
    O.A. Abroskina, G.Kh. Kitaeva, and A.N. Penin, Izmerit. Tekhn., No. 3, 14 (1986).Google Scholar
  13. 13.
    D.N. Klyshko and A.N. Penin, Sov. Phys. Usp. 30, 716 (1987).CrossRefGoogle Scholar
  14. 14.
    A. Migdall, R. Datla, A.V. Sergienko, J. S. Orszak, Y.H. Shih, Appl. Opt. 37, 3455 (1998).CrossRefGoogle Scholar
  15. 15.
    A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P.Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov. Phys. Rev. A 56, 3214 (1997).CrossRefGoogle Scholar
  16. 16.
    C. Jiang, J. Liu, B. Sun, K. Wang, J. Yao, J. Opt. 12, 045202 (2010).CrossRefGoogle Scholar
  17. 17.
    D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988).Google Scholar
  18. 18.
    G.Kh. Kitaeva, D.N. Klyshko, and I.V. Taubin, Sov. J. Quantum Electron. 12, 333 (1982).CrossRefGoogle Scholar
  19. 19.
    G. Kh. Kitaeva and A. N. Penin, J. Exp. Theor. Phys. 98, 272 (2004).CrossRefGoogle Scholar
  20. 20.
    G.Kh. Kitaeva, A.N. Penin, A.N. Tuchak, A.V. Shepelev, P.V. Yakunin, JETP Lett. 92, 291 (2010).CrossRefGoogle Scholar
  21. 21.
    G.Kh. Kitaeva. Phys. Rev. A 76, 043841 (2007).CrossRefGoogle Scholar
  22. 22.
    G.Kh. Kitaeva, A.N. Penin, JETP 98, 272 (2004).CrossRefGoogle Scholar
  23. 23.
    K.A.Kuznetsov, S.P.Kovalev, G.Kh.Kitaeva, T.D.Wang, Y.Y.Lin, Y.C.Huang, I.I.Naumova, A.N.Penin, Appl. Phys. B 101, 811 (2010).CrossRefGoogle Scholar
  24. 24.
    L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).CrossRefGoogle Scholar
  25. 25.
    T. Qiu and M. Maier, Phys. Rev. B 56, R5717 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Kh. Kitaeva
    • 1
  • S. P. Kovalev
    • 1
  • A. N. Penin
    • 1
  • A. N. Tuchak
    • 1
  • P. V. Yakunin
    • 1
  1. 1.Faculty of PhysicsM.V.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations