Advertisement

An Efficient MAINV Preconditioned COCG Method for FEM Analysis of Millimeter Wave Filters

  • Yue Hui Li
  • Zai Ping Nie
  • Min Meng
  • Xiang Qian Zhang
  • Xiang Yang Sun
Article

Abstract

The modified AINV (MAINV) sparse approximate inverse preconditioner is applied to the conjugate orthogonal conjugate gradient (COCG) iterative method for solving a large systems of linear equations resulting from the use of edge finite element method (FEM). The proposed preconditioner is derived from basic AINV process by adding pivots compensation strategy to avoid the potential breakdowns. Numerical experiments on several typical millimeter wave structrues demonstrate the effectiveness of the MAINV-COCG method, in comparison with other conventional methods.

Keywords

COCG MAINV Millimeter wave filters Preconditioning technique Sparse approximate inverse 

References

  1. 1.
    J. M. Jin, Finite Element Method in Electromagnetics, (Wiley, New York, 1993),p.1MATHGoogle Scholar
  2. 2.
    J.F. Lee , and R. Mittra, IEEE Trans. Microwave Theory Tech. 40 (1992) 1767–1773.CrossRefGoogle Scholar
  3. 3.
    R. S. Chen, X. W. Ping, and K. F. Tsang, International Journal of Infrared and Millimeter Waves 24 (2003) 2139–2151.CrossRefGoogle Scholar
  4. 4.
    Y. Saad, Iterative Methods for Sparse Linear System,(PWS Pub. Co., Boston, 1996),p.1Google Scholar
  5. 5.
    H.A. Van der Vorst, and J.B.M. Melissen, IEEE Trans. Magn. 26 (1990) 706–708.CrossRefGoogle Scholar
  6. 6.
    J. Lee, J. Zhang, C.C. Lu, IEEE Trans. Antennas Propag. 52 (2004) 2277–2287CrossRefMathSciNetGoogle Scholar
  7. 7.
    B. He, F.L. Teixeira, IEEE Trans. Antennas Propag. 55 (2007) 1359– 1368.CrossRefMathSciNetGoogle Scholar
  8. 8.
    D.Z.Ding, R.S. Chen, Z.H. Fan, P.L. Rui, IEEE Trans. Antennas Propag. 56 (2008) 1122–1132.CrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Zhu, X. W. Ping, R. S. Chen, Z.H. Fan, D. Z. Ding, Microwave and Optical Technology Letters., 52 (2010) 1036-1042 .CrossRefGoogle Scholar
  10. 10.
    R.S. Chen, Edward K.N. Yung, C.H. Chan etc, IEEE Trans. Antennas Propagat., 54 (2006), 1604-1608.CrossRefGoogle Scholar
  11. 11.
    M. Benzi, M. Tuma, and J.K. Cullum, SIAM J. Sci. Comput. 22 (2001)1318–1332.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Y.C. Shih, IEEE Trans. Microwave Theory Tech. 32 (1984) 695–704.CrossRefGoogle Scholar
  13. 13.
    D. Su, J.S. Park, Y.X. Qian, IEEE Trans. Microwave Theory Tech 47 (1999) 867–876.CrossRefGoogle Scholar
  14. 14.
    F. Arndt, J. Bornemann, IEEE Trans. Microwave Theory Tech 32 (1984) 1391–1394.CrossRefGoogle Scholar
  15. 15.
    D. P. Xiang, D.M. Zhou, J.G. He, International Conference on Microwave and Millimeter Wave Technology (8-11 May 2010) 107–109Google Scholar
  16. 16.
    X.M. Pan, X.Q. Sheng, International Conference on Microwave Technology and Computational Electromagnetics (3-6 Nov. 2009 ) 407–410.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yue Hui Li
    • 1
    • 2
  • Zai Ping Nie
    • 1
  • Min Meng
    • 1
  • Xiang Qian Zhang
    • 1
  • Xiang Yang Sun
    • 1
  1. 1.Department of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Mathematics and Computer EngineeringXihua UniversityChengduChina

Personalised recommendations