Nonlinear Simulation of a Cyclotron Autoresonance Maser (CARM) Operating in a Transverse Magnetic Mode



In the gyrotron operation, the transverse-magnetic (TM) mode is excluded because the TM mode instability vanishes when the vacuum waveguide mode and the beam mode are at grazing incidence. However, situation changes in a cyclotron autoresonance maser (CARM) interaction. In this paper nonlinear formulation of a TM-mode CARM is derived, and detailed simulations are presented for the TM1,1-mode CARM. Simulation results show that a TM1,1-mode CARM can reach high power of megawatts and ultrahigh gain of more than 70 dB, as a TE1,1-mode gyrotron traveling wave tube (gyro-TWT) and TE1,1-mode CARM did in the reported experiments.


Cyclotron autoresonance maser Transverse-magnetic mode Nonlinear theory 



This work was supported by the National Science Foundation of China (Grant No. 60871023).


  1. 1.
    V. L. Bratman, S. Ginzburg, G. S. Nusinovich, M. I. Petelin, P. S. Steklov, “Relativistic gyrotrons and autoresonance masers,” Int. J. Electron., 51, 541(1981).CrossRefGoogle Scholar
  2. 2.
    E. B. Abubakirov, “Excitation of transverse-magnetic waves and mode selection in relativistic cyclotron-resonance maser,” Radiophys. Quant. Electron. 26, 379(1983).CrossRefGoogle Scholar
  3. 3.
    A. W. Fliflet, “Linear and nonlinear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM wave-guide modes,” Int. J. Electron. 61, 1049(1986).CrossRefGoogle Scholar
  4. 4.
    S.-C. Zhang, “Gyro-peniotron focused by radial electrostatic field and axial magnetostatic field,” Int. J. Electron., 61, 1081(1986).CrossRefGoogle Scholar
  5. 5.
    S.-C. Zhang, “Gyrokinetics of transverse-magnetic-mode gyrotron, gyropeniotron, cyclotron autoresonance maser, and nonwiggler free-electron laser amplifiers,” Phys. Fluids B1, 2502 1989.Google Scholar
  6. 6.
    C. P. Chen and Jonathan S. Wurtele, “Linear and nonlinear theory of cyclotron autoresonance masers with multiple waveguide modes,” Phys. Fluids, B3, 2133(1991).Google Scholar
  7. 7.
    S. Sabchevski and T. Idehara, “Cyclotron autoresonance with TE and TM guided waves,” Int. J. Infrared and Millimeter Waves, 26, 669(2005).CrossRefGoogle Scholar
  8. 8.
    C.-Q. Jiao and J.-R. Luo, “Linear theory of the electron cyclotron maser based on TM circular waveguide mode,” Phys. Plasmas 13, 073104(2006).CrossRefGoogle Scholar
  9. 9.
    N. Yang and S.-C. Zhang, “Linear analysis of a cyclotron autoresonance maser (CARM) operating in a transverse magnetic mode,” J. Infrared, Millimeter and Terahertz Waves 30, 328(2009).Google Scholar
  10. 10.
    S.-C. Zhang and M. Thumm, “Terahertz transverse-magnetic-wave cyclotron autoresonance maser with a large-orbit relativistic electron beam,” Phys. Lett. A374, 1745(2010).Google Scholar
  11. 11.
    M. I. Petelin, “On the theory of ultrarelativistic cyclotron autoresonance maser,” Radiophys. Quantum Electron., 17, 686(1974).CrossRefGoogle Scholar
  12. 12.
    K.R. Chu, H.Y. Chen, C.L. Hung, T.H. Chang, and L.R. Barnett, “Ultrahigh gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., 21, 4760(1998).CrossRefGoogle Scholar
  13. 13.
    K.R. Chu, H.Y. Chen, C.L. Hung, T.H. Chang, L.R. Barnett, S.H. Chen, T.T. Yang, and D.J. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier,” IEEE Trans. Plasma Science, 27, 391(1999).CrossRefGoogle Scholar
  14. 14.
    G. Bekefi, A. DiRienzo, C. Leibovitch, and B.G. Danly, “35 GHz cyclotron autoresonance maser amplifier,” Appl. Phys. Lett., 54, 1302(1989).CrossRefGoogle Scholar
  15. 15.
    A.C. DiRienzo, G. Bekefi, C. Chen, and J.S. Wurtele, “Experimental and theoretical studies of a 35 GHz cyclotron autoresonance maser amplifier,” Phys. Fluids B3, 1755(1991).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Photoelectronics, School of Information Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations