Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 31, Issue 9, pp 1057–1062 | Cite as

Optical Solitons with Higher Order Dispersion in a Log Law Media

  • Anjan Biswas
  • James E. WatsonJr.
  • Carl Cleary
  • Daniela Milovic


This paper studies optical solitons with log law nonlinearity, in presence of higher order dispersions. He’s semi-inverse variational principle is used to carry out the integration of the governing equation.


Optical solitons Integrability Nonlinearity 


060.2310 060.4510 060.5530 190.3270 190.4370 



The research work, for the first three authors (AB, JW, CC) was fully supported by NSF-CREST Grant No: HRD-0630388 this support is genuinely and sincerely appreciated.


  1. 1.
    A. Biswas & S. Konar. Introduction to non-Kerr law optical solitons. CRC Press, Boca Raton, FL. USA. (2006).CrossRefGoogle Scholar
  2. 2.
    A. Biswas. “Temporal solitons of the complex Ginzburg-Landau equation with power law nonlinearity” Progress in Electromagnetics Research. Volume 96, 1–7. (2009).CrossRefGoogle Scholar
  3. 3.
    A. Biswas, E. Zerrad, J. Gwanmesia & R. Khouri. “1-soliton solution of the generalized Zakharov equation in plasmas by He’s variational principle”. Applied Mathematics and Computation. Volume 215, Issue 12, 4462–4466. (2010).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Biswas & D. Milovic. “Optical solitons with log law nonlinearity”. Communications in Nonlinear Science and Numerical Simulation. Volume 15, Issue 12, 3763–3767. (2010).CrossRefGoogle Scholar
  5. 5.
    A. Biswas & D. Wheeler. “Optical solitons with bandwidth limited amplification in a non-Kerr law media”. To appear in Optica Applicata.Google Scholar
  6. 6.
    P. D. Green, D. Milovic, D. A. Lott & A. Biswas. “Optical solitons with higher order dispersion by semi-inverse variational principle”. Progress in Electromagnetics Research. Volume 102, 337–350. (2010).Google Scholar
  7. 7.
    P. Guerrero, J. L. Lopez & J. Nieto. “Global H1 solvability of the 3D logarithmic Schrödinger equation. Nonlinear Analysis: Real World Applications. Volume 11, Issue 1, 79–87. (2010).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. H. He. “Variational principles for some nonlinear partial differential equations with variable coefficients”. Chaos, Solitons & Fractals. Volume 99, Issue 4, 847–851. (2004).CrossRefGoogle Scholar
  9. 9.
    C. M. Khalique & A. Biswas. “Gaussian soliton solution to nonlinear Schrödinger’s equation with log law nonlinearity”. International Journal of Physical Sciences. Volume 5, Issue 3, 280–282. (2010).Google Scholar
  10. 10.
    R. Kohl, A. Biswas, D. Milovic, & E. Zerrad. “Optical soliton perturbation in a non-Kerr law media”. Optics and Laser Technology. Volume 40, Issue 4, 647–662. (2008).CrossRefGoogle Scholar
  11. 11.
    R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Optical solitons by He’s variational principle in a non-Kerr law media”. Journal of Infrared, Millimeter and Terrahertz Waves. Volume 30, Number 5, 526–537. (2009).CrossRefGoogle Scholar
  12. 12.
    R. Sassaman, A. Heidari & A. Biswas. “Topological and non-topological solitons of nonlinear Klein-Gordon equations by He’s semi-inverse variational principle”. Journal of Franklin Institute. Volume 347, Issue 7, 1148–1157. (2010).CrossRefGoogle Scholar
  13. 13.
    S. Shwetanshumala. “Temporal solitons of modified complex Ginzburg-Landau Equation”. Progress in Electromagnetics Research Letters. Volume 3, 17–24. (2008).CrossRefGoogle Scholar
  14. 14.
    E. Topkara, D. Milovic, A. K. Sarma, F. Majid & A. Biswas. “A study of optical solitons with Kerr and power law nonlinearities by He’s variational principle”. Journal of European Optical Society. Volume 4, 09050. (2009).Google Scholar
  15. 15.
    B. Zhu & X-L Yang. “High-order nonlinearity influence on performance of high rate soliton communication system and its suppression method”. Journal of Infrared, Millimeter and Terahertz Waves. Volume 30, Number 6, 545–555. (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anjan Biswas
    • 1
  • James E. WatsonJr.
    • 2
  • Carl Cleary
    • 2
  • Daniela Milovic
    • 3
  1. 1.Department of Mathematical Sciences, Applied Mathematics Research Center, Center for Research and Education in Optical Sciences and ApplicationsDelaware State UniversityDoverUSA
  2. 2.Center for Research and Education in Optical Sciences and ApplicationsDelaware State UniversityDoverUSA
  3. 3.Faculty of Electronic Engineering, Department of TelecommunicationsUniversity of NisNisSerbia

Personalised recommendations