Advertisement

Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 31, Issue 9, pp 1063–1074 | Cite as

Wideband Matched CMOS LNA Design Using R-L-C Loading Network

  • Hui-I Wu
  • Qi-Yuan Horng
  • Robert Hu
  • Christina F. Jou
Article
  • 185 Downloads

Abstract

This paper proposes a new methodology for designing and analyzing wideband matched CMOS LNA with R-L-C loading network, where validity of this new approach is supported by the agreement between the simulated input impedance of the LNA and its calculated counterpart. To demonstrate its feasibility, two wideband matched LNA’s are designed using TSMC 0.18-μm RF-CMOS process. One is for 3–8 GHz application and the second one targets at 8–25 GHz frequency range. The measured results of both circuits will then be presented.

Keywords

Wideband Input matching Low noise amplifier LNA 

Notes

Acknowledgment

The authors are very grateful for the support of the National Chip Implementation Center (CIC), Hsinchu, Taiwan, R.O.C., for chip fabrication and high frequency measurement.

References

  1. 1.
    WPAN High Rate Alternative PHY Task Group 3a (TG3a), IEEE 802.15, 2007 [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html
  2. 2.
    N. R. Erickson, R. M. Grosslein, R. B. Erickson, and S. Weinreb, “A cryogenic focal plane array for 85–115 GHz using MMIC preamplifiers,” IEEE Trans. Microwave. Theory Tech. 47(12), 2212–2219 (1999), Dec.CrossRefGoogle Scholar
  3. 3.
    N. Wadefalk, et. al., “Cryogenic wide-band ultra-low noise IF amplifiers operating at ultra-low DC power,” IEEE Trans. Microwave Theory Tech. 51(6), 1705–1711 (2003), Jun.CrossRefGoogle Scholar
  4. 4.
    X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory Tech. 54(8), 3278–3283 (2006), Aug.CrossRefGoogle Scholar
  5. 5.
    P. Heydari, “Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA,” IEEE J. Solid-State Circuits. 42(9), 1892–1904 (2007), Sept.CrossRefGoogle Scholar
  6. 6.
    L. Yang, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1-to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Trans. Circuits Syst. I. 53(8), 1683–1692 (2006), Aug.CrossRefGoogle Scholar
  7. 7.
    A. Ismail and A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, 39(12), 2269–2277 (2004), Dec.CrossRefGoogle Scholar
  8. 8.
    A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A fully integrated differential CMOS LNA for 3–5-GHz ultrawideband wireless receivers,” IEEE Microwave Wireless Compon. Lett. 16(3), 134–136 (2006), Mar.CrossRefGoogle Scholar
  9. 9.
    Y.-J. E. Chen and Y.-I. Huang, “Development of Integrated Broad-Band CMOS Low-Noise Amplifiers,” IEEE Trans. Circuits Syst. I. 54(10), 2120–2127 (2007), Oct.CrossRefGoogle Scholar
  10. 10.
    C.-T. Fu, and C.-N. Kuo, “3∼11-GHz CMOS UWB LNA using dual feedback for broadband matching,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., San Francisco, California, pp. 67–70, 2006.Google Scholar
  11. 11.
    C.-T. Fu, C.-L. Ko, C.-N Kuo, and Y.-Z. Juang, “A 2.4–5.4-GHz Wide Tuning-Range CMOS Reconfigurable Low-Noise Amplifier,” IEEE Trans. Microwave Theory Tech. 56(12), 2754–2763 (2008), Dec.CrossRefGoogle Scholar
  12. 12.
    R. Hu, “Wide-band matched LNA design using transistor’s intrinsic gate-drain capacitor,” IEEE Trans. Microwave Theory Tech., 54(3), 1277–1286 (2006), Mar.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hui-I Wu
    • 1
  • Qi-Yuan Horng
    • 1
  • Robert Hu
    • 2
  • Christina F. Jou
    • 1
  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuRepublic of China
  2. 2.Department of Electronics EngineeringNational Chiao Tung UniversityHsinchuRepublic of China

Personalised recommendations