Advertisement

Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy

  • Toshitaka Idehara
  • Kosuke Kosuga
  • La Agusu
  • Ryosuke Ikeda
  • Isamu Ogawa
  • Teruo Saito
  • Yoh Matsuki
  • Keisuke Ueda
  • Toshimichi Fujiwara
Article

Abstract

A high frequency gyrotron with a 15 T superconducting magnet named Gyrotron FU CW VI has achieved continuous frequency tuning through the relatively wide range of 1.5 GHz near 400 GHz. The operation is at the fundamental cyclotron resonance of the TE06 cavity mode with many higher order axial modes. The output power measured at the end of the circular waveguide system ranges from 10 to 50 watts at the low acceleration voltage of 12 kV for beam electrons. The beam current is also low. It is around 250 mA. This gyrotron is designed as a demountable radiation source for the 600 MHz DNP-NMR spectroscopy. The design and operation results of the gyrotron FU CW VI are presented.

Keyword

Gyrotron DNP-NMR Frequency tunable sub-THz High power radiation source 

Notes

Acknowledgements

This work was achieved under collaboration between the Research Center for Development of Far Infrared Region, University of Fukui (FIR FU) and the Institute for Protein Research, Osaka University. It was supported partially by the fund for Development of Advanced Measurement Device (Sentan Project) from Japan Science and Technology Agency (JST) and the Special Fund for Education and Research from Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan. The authors would like to express many thanks to Mr. Iwahara and Mr. Yamamoto for their assistances in the operation test.

References

  1. 1.
    K. Sakamoto, M. Tsuneoka, A. Kasugai, T. Imai, T. Kariya, K. Hayashi, and Y. Mitsunaka, “Major inprovement of gyrotron efficiency with beam energy recovery,” Phys. Rev. Lett. 73, 3532–3535 (1994).CrossRefGoogle Scholar
  2. 2.
    C. T. Iatrou, O. Braz, G. Dammertz, S. Kern, M. Kuntze, B. Pioszyk, and M. Thumm, “Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial rf output,” IEEE Trans. Plasma Sci. PS-25, 470–479 (1997).CrossRefGoogle Scholar
  3. 3.
    V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, A Sh Fix, A. N. Kuftin, A. G. Litvak, M. V. Agapova, V. N. Iljin, V. A. Khmara, V. E. Myasnikov, V. O. Nichiporenko, L. G. Popov, S. V. Usachev, V. V. Alikaev, and V. I. Iljin, “Development of 170 GHz/1 MW Ressian gyrotron for ITER,” Fusion Eng. Des. 53, 377–395 (2001).CrossRefGoogle Scholar
  4. 4.
    K. Sakamoto, A. Kasugai, Y. Ikeda, K. Hayashi, K. Takahashi, M. Tsuneoka, T. Kariya, Y. Mitsunaka, T. Fujii, and T. Imai, “Development of 170 and 110 GHz gyrotron for fusion device,” Nucl. Fusion 43, 729–737 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Thumm, E. Borie, G. Dammertz, M. Kuntze, A. Mobius, H.-U. Nickel, B. Pioszyk, and A. Wien, “Development of high power 140 GHz gyrotrons for fusion plasma application, Proc. Second Int. Workshop on Strong Microwaves in Plasma, Moscow-Nizhny Novgorod-Moscow,” Inst. Appl. Phys., Nizhny Novgorod 2, 670–689 (1994).Google Scholar
  6. 6.
    K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi, and K. Kajiwara, “Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous wave gyrotron,” Nat. Phys. 3, 411–414 (2007).CrossRefGoogle Scholar
  7. 7.
    T. Idehara, Y. Shimizu, Y. Ichikawa, K. Makino, S. Shibutani, K. Kurahashi, T. Tatsukawa, I. Ogawa, Y. Okazaki, and T. Okamoto, “Development of a medium power, submillimeter wave gyrotron using a 17 T superconducting magnet,” Phys. Plasmas 2, 3246–3248 (1995).CrossRefGoogle Scholar
  8. 8.
    K. D. Hong, G. F. Brand, and T. Idehara, “A 150-600 GHz step-tunable gyrotron,” J. Appl. Phys. 74, 5250–5258 (1993).CrossRefGoogle Scholar
  9. 9.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, “Efficient low-voltage operation of a CW second harmonic gyrotron oscillator,” IEEE Trans. Plasma Sci. PS-35, 27–30 (2007).CrossRefGoogle Scholar
  10. 10.
    V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, “Submillimeter-wave gyrotrons: theory and experiment,” Int. J. Infrared Millim. Waves 4, 629–637 (1983).CrossRefGoogle Scholar
  11. 11.
    T. Idehara, H. Tsuchiya, O. Watanabe, Agusu La, and S. Mitsudo, “The first experiment of a THz gyrotron with a pulse magnet,” Int. J. Infrared Millim. Waves 27, 319–331 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Yu Glyavin, A.G. Luchinin, Generation of kW level THz radiation by the gyrotron with pulsed magnetic field, Proc.33 rd 33 rd Int. Conf. on Infrared, Millimeter andGoogle Scholar
  13. 13.
    T. Idehara, T. Saito, H. Mori, H. Tsuchiya, Agusu La, and S. Mitsudo, “Long Pulse Operation of the THz Gyrotron with a Pulse Magnet,” Int. J. Infrared Millim. Waves 29 (2), 131–141 (2008).CrossRefGoogle Scholar
  14. 14.
    T. Idehara, I. Ogawa, T. Saito, S. Mitsudo, Y. Tatematsu, Agusu La, H. Mori, and S. Kobayashi, “Development of THz gyrotrons and application to high power THz technologies,” Terahertz Science and Technologies 1 (2), 100–106 (2008).Google Scholar
  15. 15.
    T. Idehara, I. Ogawa, Agusu La, T. Kanemaki, S. Mitsudo, T. Saito, T. Fujiwara, and H. Takahashi, “Development of 394.6 GHz CW Gyrotron (Gyrotron FU CW II) for DNP/NMR at 600 MHz,” Int. J. Infrared Millim. Waves 28 (6), 433–442 (2007).CrossRefGoogle Scholar
  16. 16.
    V. S. Bajaj, C. T. Farrar, M. K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K. E. Kreischer, R. J. Temkin, and R. G. Griffin, “Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source,” J. Magn. Reson. 160, 85–90 (2003).CrossRefGoogle Scholar
  17. 17.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, Agusu La, H. Mori, and S. Kobayashi, “Development of terahertz FU CW gyrotron series for DNP-NMR,” Appl. Magn. Reson. 34, 265–275 (2008).CrossRefGoogle Scholar
  18. 18.
    T. Fujiwara, H. Takahashi, Y. Matsui, K. Ueda, T. Idehara, I. Ogawa, M. Toda, Dynamic nuclear polarization experiment at 14.1 T for solid state NMR, Second Dynamic Nuclear Polarization Symposium, Konigstein, Germany, 2-4 September 2009.Google Scholar
  19. 19.
    K.J. Pike, R. Dupree, A.P. Howes, T.F. Kemp, E.V. Kyukov, R.M. Kowalczyk, H. Takahashi, J.F. MacDonald, M.E. Newton, G.M. Smith, D.R. Bolton, A. Watts, M. Orwick, T. Idehara, M. Smith, DNP-Enhanced NMR at 304 and 14.1 Tesla with High-Power Microwave Sources, Second Dynamic Nuclear Polarization Symposium, Konigstein, Germany, 2-4 September 2009.Google Scholar
  20. 20.
    T. Idehara, J. Goulon, A. Rogalev, F. Wilhelm, sub-THz cyclotron maser for XDMR on ESRF beamline ID12, ESRF Internal Report JG XDMR THz rev1, November 30, 2007.Google Scholar
  21. 21.
    S. Mitsudo, Aripin, T. Matauda, K. Kitai, T. Kanemaki, T. Idehara, and I. Ogawa, “ESR spectrometer using submillimeter wave gyrotrons and pulsed high magnetic field,” Proc. of 4 th Int. Conf. on Strong Microwave in Plassmas 2, 751–756 (2000).Google Scholar
  22. 22.
    I. Ogawa, M. Iwata, T. Idehara, K. Kawahata, H. Iguchi, and A. Ejiri, “Plassma scattering measurement using a submillimeter wave gyrotron (Gyrotron FU II) as a power source,” Fusion Eng. Des. 34-35, 455–458 (1997).CrossRefGoogle Scholar
  23. 23.
    T. Suehara, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida,T. Idehara, I. Ogawa, S. Kobayashi, Y. Urushizaki and S. Sabchevski, Probing the Energy Structure of Positronium with a 203 GHz Fabry-Perot Cavity, XXVI International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC2009), 22-28 July 2009, York Univ., Western Michigan Univ., Kalamazoo, USA.Google Scholar
  24. 24.
    H. Takahashi, K.J. Pike, R. Dupree, A.P. Howes, M.E. Newton, T.F. Kemp, J.F. MacDonald, D.R. Bolton, G.M. Smith, T. Idehara, I. Ogawa, K. Kosuga, M. Smith, Gyrotron FU CW VII for 600 MHz and 285 MHz DNP-NMR, Second Dynamic Nuclear Polarization Symposium, Konigstein, Germany, 2-4 September 2009. Google Scholar
  25. 25.
    T. H. Chang, T. Idehara, I. Ogawa, L. Agusu, and S. Kobayashi, “Frequency tunable gyrotron using backward-wave components,” J. Appl. Phys. 105, 063304 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Toshitaka Idehara
    • 1
  • Kosuke Kosuga
    • 1
  • La Agusu
    • 1
  • Ryosuke Ikeda
    • 1
  • Isamu Ogawa
    • 1
  • Teruo Saito
    • 1
  • Yoh Matsuki
    • 2
  • Keisuke Ueda
    • 2
  • Toshimichi Fujiwara
    • 2
  1. 1.Research Center for Development of Far Infrared RegionUniversity of FukuiFukui-shiJapan
  2. 2.Institute for Protein ResearchOsaka UniversityOsakaJapan

Personalised recommendations