High Gain Patch Antenna with Composite Right-Left Handed Structure and Dendritic Cell Metamaterials



We present a novel high-gain patch antenna utilizing composite right-left handed (CRLH) structure and dendritic cell metamaterials. The proposed CRLH antenna, composed of modified Sievenpiper mushroom unit-cells, is based on the positive first-order resonance mode for high gain. In addition, the dendritic cell metamaterials are used to surround the proposed antenna to further increase the antenna directivity and gain due to suppressing the surface waves. The experimental results show that the gain and the directivity of the proposed antenna with CRLH and dendritic cells can be improved by 3.88 dB and 8.82, respectively, in comparison with a conventional patch antenna. Moreover, a 10-dB bandwidth with 9.55% is achieved. The measured results are in good agreement with the simulated ones.


Patch antenna CRLH Dendritic metamaterials Radiation patterns High gain 



This work is supported by the National Natural Science Foundation of China (Grant No.50872113), the state Key Development Program for Basic Research of China (Grant No. 2004CB719805), and the Defense Basic Research Program of China.


  1. 1.
    V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).CrossRefGoogle Scholar
  2. 2.
    R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).CrossRefGoogle Scholar
  3. 3.
    X. Zhou and X. P. Zhao, “Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability,” Appl. Phys. Lett. 91 (1–3), 181908 (2007).CrossRefMathSciNetGoogle Scholar
  4. 4.
    W. R. Zhu, X. P. Zhao, and N. Ji, “Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects,” Appl. Phys. Lett. 90 (1–3), 011911 (2007).CrossRefGoogle Scholar
  5. 5.
    Y. H. Liu and X. P. Zhao, “Investigation of anisotropic negative permeability medium cover for patch antenna,” IET Microw. Antennas Propag. 2, 737–744 (2008).CrossRefGoogle Scholar
  6. 6.
    X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, “Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials,” Opt. Express 14, 7188–7197 (2006).CrossRefGoogle Scholar
  7. 7.
    S. N. Burokur, M. Latrach, and S. Toutain, “Theoretical investigation of a circular patch antenna in the presence of a left-handed medium,” IEEE Antennas Wireless Propag. Lett. 4, 183–186 (2005).CrossRefGoogle Scholar
  8. 8.
    S. N. Burokur, A. Ourir, J. Daniel, P. Ratajczak, and A. Lustrac, “Highly directive ISM band cavity antenna using a bi-layered metasurface reflector,” Microw. Opt. Technol. Lett. 51, 1393–1396 (2009).CrossRefGoogle Scholar
  9. 9.
    G. X. Yu and T. J. Cui, “Imaging properties of a line source using general anisotropic metamaterials,” J. Infrared Millim. Waves 30, 71–84 (2009).CrossRefGoogle Scholar
  10. 10.
    Y. Pan and S. Xu, “A double-beam radiation leaky wave antenna based on left-handed material slab with metallic strips periodically loaded,” J. Infrared Millim. Waves 29, 1163–1171 (2008).CrossRefGoogle Scholar
  11. 11.
    J. C. Ding, Z. L. Lin, Z. N. Ying, and S. L. He, “A compact ultra-wideband slot antenna with multiple notch frequency bands,” Microw. Opt. Technol. Lett. 49, 3056–3060 (2007).CrossRefGoogle Scholar
  12. 12.
    S. A. Tretyakov and M. Ermutlu, “Modeling of patch antennas partially loaded with dispersive backward-wave materials,” IEEE Antennas Wireless Propag. Lett. 4, 266–269 (2005).CrossRefGoogle Scholar
  13. 13.
    S. A. Tretyakov, S. I. Maslovski, I. S. Nefedov, and M. K. Kärkkäinen, “Evanescent modes stored in cavity resonators with backward-wave slabs,” Microw. Opt. Technol. Lett. 38, 153–157 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Ghadarghadr, A. Ahmadi, and H. Mosallaei, “Negative permeability-based electrically small antennas,” IEEE Antennas Wireless Propag. Lett. 7, 13–17 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Subwavelength, compact, resonant patch antennas loaded with metamaterials,” IEEE Trans. Antennas Propag. 55, 13–25 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89 (1–3), 053509 (2006).CrossRefGoogle Scholar
  17. 17.
    G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Lai, K. M. K. H. Leong, and T. Itoh, “Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures,” IEEE Trans. Antennas Propag. 55, 868–876 (2007).CrossRefGoogle Scholar
  19. 19.
    J. G. Lee and J. H. Lee, “Zeroth order resonance loop antenna,” IEEE Trans. Antennas Propag. 55, 994–997 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. Wang, M. Hsu, and S. Chung, “A compact slot antenna utilizing a right/left-handed transmission line feed,” IEEE Trans. Antennas Propag. 56, 675–683 (2008).CrossRefGoogle Scholar
  21. 21.
    C. Lee, K. M. K. H. Leong, and T. Itoh, “Composite right-left-handed transmission line based compact resonant antennas for RF module integration,” IEEE Trans. Antennas Propag. 54, 2283–2291 (2006).CrossRefGoogle Scholar
  22. 22.
    X. Y. Jie, C. R. Luo, and X. P. Zhao, “A dual-frequency microstrip antenna based on an unbalanced composite right/left-handed transmission line,” Microwave Opt. Technol. Lett. 50, 767–771 (2008).CrossRefGoogle Scholar
  23. 23.
    A. Yu, F. Yang, and A. Elsherbeni, “A dual band circularly polarized ring antenna based on composite right and left handed metamaterials,” Progress in Electromagnetics Research, PIER 78, 73–81 (2008).CrossRefGoogle Scholar
  24. 24.
    D. Sievenpiper, L. Zhang, F. J. Broas, N. G. Alexopulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Z. Azad and M. Ali, “Novel wideband directional dipole antenna on a mushroom like EBG structure,” IEEE Trans. Antennas Propag. 56, 1242–1250 (2008).CrossRefGoogle Scholar
  26. 26.
    A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag. 5 (3), 34–50 (2004).CrossRefGoogle Scholar
  27. 27.
    R. Garg, R. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook (Artech House, Boston and London, 2001), pp. 253–311.Google Scholar
  28. 28.
    J. R. James and P. S. Hall, Handbook of microstrip antennas (Peter Peregrinus Ltd, London, United Kingdom, 1989), pp. 111–207.Google Scholar
  29. 29.
    E. Rajo-Iglesias, Ó. Quevedo-Teruel, and L. Inclán-Sánchez, “Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate,” IEEE Trans. Antennas Propag. 56, 1648–1655 (2008).CrossRefGoogle Scholar
  30. 30.
    J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88 (1–3), 221103 (2006).CrossRefGoogle Scholar
  31. 31.
    M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B. 75 (1–9), 235114 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations