Advertisement

Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

  • Wojciech Knap
  • Mikhail Dyakonov
  • Dominique Coquillat
  • Frederic Teppe
  • Nina Dyakonova
  • Jerzy Łusakowski
  • Krzysztof Karpierz
  • Maciej Sakowicz
  • Gintaras Valusis
  • Dalius Seliuta
  • Irmantas Kasalynas
  • Abdelouahad El Fatimy
  • Y. M. Meziani
  • Taiichi Otsuji
Article

Abstract

Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.

Keywords

THz detectors Field-effect transistors Plasma waves Imaging 

Notes

Acknowledgements

We thank prof. T. Skotnicki (ST Microelectronics) for providing the Silicon FETs, prof. A. Cappy and prof. S. Bollaert (IEMN, Lille) for providing InGaAs HEMTs. We thank also dr. P. Mounaix and dr. E. Abraham (LPMOH CNRS and Bordeaux I University) for their experimental support in the time domain spectroscopy. This work was financially supported in part by JSPS International Fellowship Program for Research in Japan, by the joint French-Lithuanian research program “Gilibert/EGIDE.”, and by the joint French-Japanese research program “Sakura/EGIDE.”. JŁ, WK and KK acknowledge the support of 162/THz/2006/02 and MTKD-CT-2005-029671 grants. The authors from the Montpellier University acknowledge the CNRS guiding GDR and GDR-E projects “Semiconductor sources and detectors of THz frequencies” and the Region of Languedoc-Roussillon through the “Terahertz Platform” project, as well as ANR TeraGaN project. Experiments at Vilnius were conducted under the project “Terahertz optoelectronics: devices and applications” (No. 179 J).

References

  1. 1.
    M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).CrossRefGoogle Scholar
  2. 2.
    M. I. Dyakonov and M. S. Shur, IEEE Trans. Electron Devices 43, 380 (1996).CrossRefGoogle Scholar
  3. 3.
    W. Knap, J. Łusakowski, T. Parenty, S. Bollaert, A. Capy, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).CrossRefGoogle Scholar
  4. 4.
    N. Dyakonova, F. Teppe, J. Łusakowski, W. Knap, M. Levinshtein, A. P. Dmitriev, M. S. Shur, S. Bollaert, and A. Cappy, J. Appl. Phys. 97, 114313 (2005).CrossRefGoogle Scholar
  5. 5.
    W. Knap, F. Teppe, N. Dyakonova, D. Coquillat, and J. Lusakowski, Journal-of-Physics: Condensed-Matter. 20 (38), 384205 (2008).Google Scholar
  6. 6.
    J.-Q. Lu, M. S. Shur, J. L. Hesler, L. Sun, and R. Weikle, IEEE Electron Device Lett. 19, 373 (1998).CrossRefGoogle Scholar
  7. 7.
    J.-Q. Lu and M. S. Shur, Appl. Phys. Lett. 78, 2587 (2001).CrossRefGoogle Scholar
  8. 8.
    W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 81, 4637 (2002).CrossRefGoogle Scholar
  9. 9.
    W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. Asif Khan, C. A. Saylor, and L. C. Brunel, J. Appl. Phys. 91, 9346 (2002).CrossRefGoogle Scholar
  10. 10.
    W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel, Appl. Phys. Lett. 80, 3434 (2002).Google Scholar
  11. 11.
    A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).CrossRefGoogle Scholar
  12. 12.
    A. El Fatimy, N. Dyakonova, F. Teppe, W. Knap, N. Pala, R. Gaska, Q. Fareed, X. Hu, D. B. Veksler, S. Rumyantsev, M. S. Shur, D. Seliuta, G. Valusis, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, Electron. Lett. 42, 1342 (2006).CrossRefGoogle Scholar
  13. 13.
    W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Łusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 85, 675 (2004).CrossRefGoogle Scholar
  14. 14.
    R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 89, 253511 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Lisauskas, U. Pfeiffer, E. Öjefors, P. H. Bolìvar, D. Glaab, and H. G. Roskos, J. Appl. Phys. 105, 114511 (2009).CrossRefGoogle Scholar
  16. 16.
    E. Öjefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, “A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology” to appear in IEEE J. Solid-State Circuits 44 (7), (2009).Google Scholar
  17. 17.
    M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek, J. Appl. Phys. 104, 024519 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, W. Knap, W. Gwarek, and S. Boubanga, Act. Phys. Pol. A 114, 1337 (2008).Google Scholar
  19. 19.
    D. B. Veksler, A. V. Muravjov, V. Yu. Kachorovskii, T. A. Elkhatib, K. N. Salama, X. -C. Zhang, and M. S. Shur, Solid-State Electron. 53 (6), 571 (2009).CrossRefGoogle Scholar
  20. 20.
    S. A. Maas, A GaAs MESFET Mixer with Very Low Intermodulation, IEEE Transactions on Microwave Theory and Techniques 35, No. 4 (1987).Google Scholar
  21. 21.
    H. Zirath, N. Rorsman, A Resisitive HEMT-Mixer with Very Low LO-Power Requirements and Low Intermodulation, 21st European Microwave Conference Proceedings, pp. 1469–1474, EuMC (1991).Google Scholar
  22. 22.
    H.-G. Krekels, B. Schiek, and E. Menzel, Proc. European Microwave Conf., 174 (1992).Google Scholar
  23. 23.
    S. Boubanga-Tombet, M. Sakowicz, D. Coquillat, F. Teppe, W. Knap, M. I. Dyakonov, K. Karpierz, J. Łusakowski, and M. Grynberg, Appl. Phys. Lett. (2009), accepted for publication, (http://arxiv.org/abs/0904.2081).
  24. 24.
    Within the hydrodynamic approach [1], the lhs of Eq. (4) contains an additional “convective” nonlinear term v(∂v/∂x). The hydrodynamic approach is valid when the collisions between electrons are more frequent than collisions with impurities and phonons.Google Scholar
  25. 25.
    M. I. Dyakonov and A. S. Furman, Sov. Phys. JETP G 65, 574 (1987).Google Scholar
  26. 26.
    T. Tanigawa, T. Onishi, O. Imafuji, S. Takigawa, and T. Otsuji, “AlGaN/GaN Plasmon-Resonant Terahertz Detectors with On-Chip Patch Antennas”, proceedings of The Conference on Lasers and Electro-Optics (CLEO) 2009.Google Scholar
  27. 27.
    W. Stillman, M. S. Shur, D. Veksler, S. Rumyantsev, and F. Guarin, Electron. Lett. 43, 422 (2007).CrossRefGoogle Scholar
  28. 28.
    M. Dyakonov, Semiconductors 42, 984 (2008).CrossRefGoogle Scholar
  29. 29.
    V. V. Popov, O. V. Polischuk, W. Knap, and A. El Fatimy, Appl. Phys. Lett. 93, 263503 (2008).CrossRefGoogle Scholar
  30. 30.
    V. Ryzhii, A. Satou, W. Knap, and M. S. Shur, J. Appl. Phys. 99, 084507 (2006).CrossRefGoogle Scholar
  31. 31.
    I. Khmyrova and Yu Seijyou, Appl. Phys. Lett. 91, 143515 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Shchepetov, C. Gardès, Y. Roelens, A. Cappy, S. Bollaert, S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, D. Seliuta, R. Vadoklis, and G. Valušis, Appl. Phys. Lett. 92, 242105 (2008).CrossRefGoogle Scholar
  33. 33.
    S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardès, Y. Roelens, S. Bollaert, D. Seliuta, R. Vadoklis, and G. Valušis, Appl. Phys. Lett. 92, 212101 (2008).CrossRefGoogle Scholar
  34. 34.
    D. Veksler, F. Teppe, A. P. Dmitriev, V. Yu, W. K. Kachorovskii, and M. S. Shur, Phys. Rev. B 73, 125328 (2006).CrossRefGoogle Scholar
  35. 35.
    F. Teppe, D. Veksler, V. Yu, A. P. Kachorovski, S. R. Dmitriev, W. Knap, and M. S. Shur, Appl. Phys. Lett. 87, 052107 (2005).CrossRefGoogle Scholar
  36. 36.
    F. Teppe, D. Veksler, V. Yu, A. P. Kachorovski, A. P. Dmitriev, X.-C. Zhang, S. Rumyantsev, W. Knap, and M. S. Shur, Appl. Phys. Lett. 87, 022102 (2005).CrossRefGoogle Scholar
  37. 37.
    F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, Appl. Phys. Lett. 89, 222109 (2006).CrossRefGoogle Scholar
  38. 38.
    G. R. Aizin, V. V. Popov, and O. V. Polischuk, Appl. Phys. Lett. 89, 143512 (2006).CrossRefGoogle Scholar
  39. 39.
    V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, and N. J. M. Horing, J. Appl. Phys. 94, 3556 (2003).CrossRefGoogle Scholar
  40. 40.
    X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys. Lett. 81, 1627 (2002).CrossRefGoogle Scholar
  41. 41.
    E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 90, 181127 (2007).CrossRefGoogle Scholar
  42. 42.
    T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, Opt. Express 14, 4815 (2006).CrossRefGoogle Scholar
  43. 43.
    T. Otsuji, Y. M. Meziani, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, Appl. Phys. Lett. 89, 263502 (2006).CrossRefGoogle Scholar
  44. 44.
    Y. M. Meziani, T. Otsuji, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, Appl. Phys. Lett. 90, 061105 (2007).CrossRefGoogle Scholar
  45. 45.
    D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, W. Knap, Y. M. Meziani, T. Nishimura, and T. Otsuji, to be submitted to J. Appl. Phys. (2009).Google Scholar
  46. 46.
    A. Lisauskas, W. von Spiegel, S. Boubanga, A. El Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, Electr. Lett. 44, 408 (2008).CrossRefGoogle Scholar
  47. 47.
    S. Nadar, H. Videlier, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, G. Valusis, D. Seliuta, and I. Kasalynas, to be submitted to J. Appl. Phys. (2009).Google Scholar
  48. 48.
    A. El Fatimy, J.C. Delagnes, E. Abraham, E. Nguema, P. Mounaix, F. Teppe, and W. Knap, ICIMW, p1-2 10.1109 4665764 (2008)Google Scholar
  49. 49.
    U.R. Pfeiffer, E. Öjefors, A. Lisauskas, D. Glaab, and H.G. Roskos "A CMOS Focal-Plane Array for Heterodyne Terahertz Imaging" to appear in the Digest of IEEE Radio Frequency Integrated Circuits Symposium 2009.Google Scholar
  50. 50.
    A. W. Min Lee and Q. Hu, Optics Letters 30, 2563 (2005).CrossRefGoogle Scholar
  51. 51.
    A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, IEEE Photonics Technol. Lett. 18, 1415 (2006).CrossRefGoogle Scholar
  52. 52.
    B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Opt. Lett. 33, 440 (2008).CrossRefGoogle Scholar
  53. 53.
    I. Kasalynas, A. J. L. Adam, T. O. Klaassen, J. N. Hovenier, G. Pandraud, V. P. Iordanov, and P. M. Sarro, IEEE J. Sel. Top. Quantum Electron. 14, 363 (2008).CrossRefGoogle Scholar
  54. 54.
    I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, K. Köhler, and G. Valušis, Electron. Lett. 45, 833 (2009).CrossRefGoogle Scholar
  55. 55.
    D. Seliuta, I. Kašalynas, V. Tamošiūnas, S. Balakauskas, Z. Martūnas, S. Ašmontas, G. Valušis, A. Lisauskas, H. G. Roskos, and K. Köhler, Electron. Lett. 42, 825 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wojciech Knap
    • 1
  • Mikhail Dyakonov
    • 1
  • Dominique Coquillat
    • 1
  • Frederic Teppe
    • 1
  • Nina Dyakonova
    • 1
  • Jerzy Łusakowski
    • 2
  • Krzysztof Karpierz
    • 2
  • Maciej Sakowicz
    • 2
  • Gintaras Valusis
    • 3
  • Dalius Seliuta
    • 3
  • Irmantas Kasalynas
    • 3
  • Abdelouahad El Fatimy
    • 4
  • Y. M. Meziani
    • 4
  • Taiichi Otsuji
    • 4
  1. 1.Université Montpellier2 – CNRSMontpellierFrance
  2. 2.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland
  3. 3.Semiconductor Physics InstituteVilniusLithuania
  4. 4.RIEC Ultra-broadband Signal ProcessingTohoku UniversityAoba-kuJapan

Personalised recommendations