Advertisement

W Band Dicke-Radiometer For Imaging

  • L. C. Li
  • J. Y. Yang
  • J. T. Xiong
  • J. J. Wu
  • Z. M. Jiang
  • X. Zheng
Article

Abstract

In this paper, a novel model is presented for Passive Millimeter Wave Imaging (PMMWI) in the near diffraction limited range. A compact W band super-heterodyne Dicke-radiometer is designed based on the research of the model. A super-resolution algorithm is adopted in order to solve the inherent problem of poor resolution imaging, which is caused by limited aperture dimensions and the consequent diffraction limit. Theoretical researches indicate that the super-resolution performance and spatial resolution are enhanced by this model and algorithm in the near diffraction limited range.

Keywords

PMMWI Dicke-Radiometer Sensitivity Super-resolution 

Notes

Acknowledgement

This work is supported by the State Key Program of National Natural Science Foundation of China (grant NO. 60632020) and supported by the National Natural Science Foundation of China (NO. 60776823).

References

  1. 1.
    P. Moffa, L. Yujiri, H. H. Agravante et al., “A large-aperture passive millimetre wave pushbroom camera, Passive Millimeter-wave Imaging Technology V,” Proc.of SPIE 4373, 1–6 (2001).CrossRefGoogle Scholar
  2. 2.
    Z. Guangfeng, Z. Zuyin, and G. Wei, “Research on 3 mm band radiometric imaging,” Journal of Infrared and Millimeter waves 24(6), 422–426 (2005).Google Scholar
  3. 3.
    L. Yujiri, M. Shoucri, and P. Moffa, “Passive Millimeter Wave Imaging,” IEEE Microwave Magazine, 39–50 (2003).Google Scholar
  4. 4.
    W. HuaLi, L. Xingguo, P. Shusheng et al., “Passive millimeter-wave imaging techniques,” Journal of Infrared and Millimeter Waves 16(4), 297–302 (1997).Google Scholar
  5. 5.
    D. G. Macfarlane, “Close Range Passive Millimetre Wave Imaging,” Ph.D Thesis, University of St Andrews, 2002.Google Scholar
  6. 6.
    D. G. Macfarlane, and D. A. Robertson, “A dual-mode imaging millimeter wave radar/radiometer for volcanological surveying,” IGARSS 04 Proceedings of IEEE on Geosience and Remote Sensing Symposium 5, 3299–3302 (2004).CrossRefGoogle Scholar
  7. 7.
    D. A. Robertson, “Compact mm-wave medical imager,” Proc. of SPIE 5410, 219–229 (2004).CrossRefGoogle Scholar
  8. 8.
    J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co, New York, 1968).Google Scholar
  9. 9.
    F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave Remote Sensing: Fundamentals and Radiometry,”1, (Artech House, Norwood, 1981), p. 402–403.Google Scholar
  10. 10.
    A. Chritopher Martin, W. Manning, and V. G. Koliano, “Flight Test of a Passive Millimeter-Wave Imaging System,” Proc. of SPIE 5789, 24–34 (2005).CrossRefGoogle Scholar
  11. 11.
    E. Sreenivas, “Optimisation of MillimetreWave Sensors for Security Imaging.” The master Thesis, University of Technology, Sweden.Google Scholar
  12. 12.
    B. Su, J. Weiqi, and N. Lihong, “Superresolution image restoration and progress,” Optical Technique 27(1), 6–9 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L. C. Li
    • 1
  • J. Y. Yang
    • 1
  • J. T. Xiong
    • 1
  • J. J. Wu
    • 1
  • Z. M. Jiang
    • 1
  • X. Zheng
    • 1
  1. 1.School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations