Analysis of Frequency Selective Surfaces with Metallic and Dielectric Losses at Millimeter Wave Range

  • Antonio Luiz Pereira de Siqueira Campos


In this paper, a theoretical analysis of scattering from a doubly frequency selective surfaces (FSS) with dielectric and metallic losses in the millimeter wave range is presented. The theoretical analysis involves the solution of the electric field integral equation relating the induced current in the FSS in the presence of anisotropic dielectric layers. The method of moment is employed to obtain numerical results. The frequency selective surface structure considered is composed by conducting patch elements sandwiched between two anisotropic dielectric layers. Three different anisotropic materials are considered: Epsilam-10, Alumina, and Sapphire. The sapphire presents low losses when compared with the other two dielectric materials. The most common metals, as copper and aluminum, are considered in this analysis. None significant metallic losses were observed for any considered metal. Numerical results are presented for the scattering characteristics and for dielectric and metallic losses parameters.


FSS Dielectric and metallic losses Millimeter wave range Anisotropy 


  1. 1.
    R. Mittra, C. H. Chan, and T. Cwik, Techniques for analyzing frequency selective surfaces-a review. IEEE Proceedings 76, 12 (1988).CrossRefGoogle Scholar
  2. 2.
    T. K. Wu, Frequency selective surface and grid array. (Jonh Wiley & Sons, New York, 1995).Google Scholar
  3. 3.
    B. A. Munk, Frequency Selective Surfaces: Theory and Design. (Jonh Wiley & Sons, New York, 2000).Google Scholar
  4. 4.
    J. C. Vardaxoglou, Frequency Selective Surface: Analysis and Design. (Jonh Wiley & Sons, New York, 1997).MATHGoogle Scholar
  5. 5.
    D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, Resonant metal-mesh bandpass filters for the far infrared. Applied Optics 33, 25 (1994).CrossRefGoogle Scholar
  6. 6.
    R. Hall, and R. Mittra, Scattering from a periodic array of resistive strips. IEEE Trans. Antennas Propag 33, 9 (1985).CrossRefGoogle Scholar
  7. 7.
    T. Cwik, and R. Mittra, Scattering from a periodic array of free-standing arbitrarily shaped perfectly conducting or resistive patches. IEEE Trans Antennas Propag 35, 11 (1987).Google Scholar
  8. 8.
    G. I. Kiani, A. R. Weily, and K. P. Esselle, Frequency Selective Surface Absorber using Resistive Cross-Dipoles. IEEE Antennas and Propagation Society International Symposium, (2006).Google Scholar
  9. 9.
    T. Schimert, M. E. Koch, and C. H. Chan, Analysis of Scattering from Frequency Selective Surfaces in the Infrared. J. Opt. Soc. Am. 7, 8 (1990).Google Scholar
  10. 10.
    J. A. Bossard, L. Li, J. A. Smith, D. H. Werner, T. S. Mayer, R. P. Drupp, and Y. Tang, Terahertz applications of frequency selective surfaces: analysis, design, fabrication and testing. IEEE Antennas and Propagation Society International Symposium, (2006).Google Scholar
  11. 11.
    H. T. Liu, H. F. Cheng, Z. Y. Chu, and De-Yong. Zhang, Absorbing properties of frequency selective surface absorbers with cross-shaped resistive patches. Mater. Des. 28, 7 (2007).Google Scholar
  12. 12.
    M. Kominami, H. Wakabayashi, S. Sawa, and H. Nakashima, Scattering from a periodic array of arbitrary shaped elements on a semiinfinite substrate. Electron. Commun. Jpn (Part I: Communications) 77, 1 (2007).Google Scholar
  13. 13.
    M. Gustafsson, RCS reduction of integrated antenna arrays with resistive sheets. J. Electromagn. Waves Appl 20, 1 (2006).CrossRefGoogle Scholar
  14. 14.
    A. L. P. S. Campos, Analysis of FSS with Dielectric Losses at Millimeter Wave Band Using the Transverse Transmission Line Method. Int. J. Infrared Millim. Waves 28, 2 (2007).CrossRefGoogle Scholar
  15. 15.
    A. L. P. S. Campos, Transverse transmission line method to analyze stop-band microwave filters. Microw. Opt. Technol. Lett. 49, 11 (2007).Google Scholar
  16. 16.
    J. A. Buck, and W. H. Hayt, Engineering Electromagnetics. (Mcgraw-Hill Professional, New York, 2004).Google Scholar
  17. 17.
    Z. Y. Shen, High-Temperature Superconductors Microwave Circuits. (Artech House inc., Boston, 1994).Google Scholar
  18. 18.
    Z. Xiaoxia, P. Wei, and S. Lucyszyn, A New Theoretical Modeling of Surface Resistance in Normal Metals at Terahertz Frequencies. Int. J. Infrared Millim. Waves 25, 11 (2004).CrossRefGoogle Scholar
  19. 19.
    J. J. Barroso, P. J. Castro, and J. P. Leite Neto, Electrical Conductivity Measurement Through the Loaded Q Factor of a Resonant Cavity. Int. J. Infrared Millim. Waves 24, 1 (2003).CrossRefGoogle Scholar
  20. 20.
    A. Nakayama, A. Fukuura, and M. Nishimura, Millimeter-wave measurement of complex permittivity using dielectric rod resonator excited by NRD-guide. IEEE Trans. Microwave Theor. Tech. 51, 1 (2003).CrossRefGoogle Scholar
  21. 21.
    A. C. César, Analysis Of Anisotropic Nonradiative Dielectric (Nrd)-Guides Using Coupled-Mode Theory. XXVIIth General Assembly of the International Union of Radio Science, (2002).Google Scholar
  22. 22.
    B. Bhat, and S. K. Koul, Analysis, design and applications of fin lines. (Artech House inc., Boston, 1987).Google Scholar
  23. 23.
    T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation. IEEE Trans. Antennas Propag. 47, 5 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento Acadêmico de Tecnologia da Informação e Indústria, Centro Federal de Educação Tecnológica do Rio Grande do NorteUnidade de Ensino descentralizada da Zona Norte de NatalNatalBrazil

Personalised recommendations