Dispersion Characteristics of Arbitrary Periodic Structures with Rectangular Grooves

  • Ioannis G. Tigelis
  • Jean-Yves Raguin
  • Zisis C. Ioannidis
  • George P. Latsas
  • Angelos J. Amditis


The dispersion characteristics of a circular cylindrical waveguide with periodic surface corrugations consisting of rectangular grooves with smoothing are examined using the Space Harmonic Method (SHM). The whole structure is divided into two regions, one describing the propagation volume and one inside the grooves. In the first region, the Floquet theorem is applicable and the field distribution is expressed as a summation of spatial Bloch components, whereas in the second one an appropriate Fourier expansion of standing waves is used. Applying the boundary conditions an infinite system of equations is obtained, which is solved numerically by truncation. Several cases are considered, including the limiting cases of a sinusoidal and a rectangular corrugation profile, to check the accuracy of the method proposed as well as its dependence on the corrugation profile. Numerical results are presented only for transverse magnetic modes, although the formalism can be easily extended to include all kinds of waves that can in principle propagate in such a structure.


Slow-wave structures Floquet theorem Rayleigh criterion Rectangular grooves with smooth edges 



We would like to thank the anonymous reviewers for their valuable comments and suggestions, which improve significantly this work.


  1. 1.
    J. A. Swegle, J. W. Poukey, and G. T. Leifeste, Physics of Fluids 28, 2882 (1985).CrossRefADSGoogle Scholar
  2. 2.
    S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, V. I. Koshelev, V. A. Popov, and A. N. Vlasov, IEEE Transactions on Plasma Science 18, 518 (1990).CrossRefADSGoogle Scholar
  3. 3.
    S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, A. I. Klimov, A. D. Kopenkin, V. I. Koshelev, V. A. Popov, and A. I. Slepkov, IEEE Transactions on Plasma Science 18, 525 (1990).CrossRefADSGoogle Scholar
  4. 4.
    R. J. Barker and E. Schamiloglu, High-Power Microwave Sources and Technologies (John Wiley, New York, 2001).Google Scholar
  5. 5.
    H. Wang, Z. Yanh, L. Ziao, and Z. Liang, IEEE Transactions on Plasma Science 33, 111 (2005).CrossRefADSGoogle Scholar
  6. 6.
    A. Bromborksy and B. Ruth, IEEE Transactions on Microwave Theory and Techniques 32, 600 (1984).CrossRefADSGoogle Scholar
  7. 7.
    Y. Carmel, H. Guo, W. R. Lou, D. Abe, V. L. Granatstein, and W. W. Destler, Applied Physics Letter 57, 1304 (1990).CrossRefADSGoogle Scholar
  8. 8.
    A. N. Vlasov, A. G. Shkvarunets, J. C. Rodgers, Y. Carmel, T. M. Antonsen, T. M. Abuelfadl, D. Lingze, V. A. Cherepenin, G. Nusinovich, M. Botton, and V. L. Granatstein, IEEE Transactions on Plasma Science 28, 550 (2000).CrossRefADSGoogle Scholar
  9. 9.
    S. Amari, R. Valhdieck, and J. Bornemann, IEEE Microwave Guided Wave Letters 9, 7 (1999).CrossRefGoogle Scholar
  10. 10.
    K. Minami, M. Saito, Y. Choyal, K. P. Maheshwari, and V. L. Granatstein, IEEE Transactions on Plasma Science 30, 1134 (2002).CrossRefADSGoogle Scholar
  11. 11.
    R. Pettit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).Google Scholar
  12. 12.
    I. L. Verbitskii and G. I. Zaginaylov, IEEE Transactions on Plasma Science 27, 1101 (1999).CrossRefADSGoogle Scholar
  13. 13.
    T. Watanabe, Y. Choyal, K. Minami, and V. L. Granatstein, Physical Review E 69, 056606 (2004).CrossRefADSGoogle Scholar
  14. 14.
    J. J. Barroso, J. P. Leite Neto, and K. G. Kostov, IEEE Transactions on Plasma Science 31, 752 (2003).CrossRefADSGoogle Scholar
  15. 15.
    J. P. Leite Neto and J. J. Barroso, Brazilian Journal of Physics 34, 1577 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Zhang, Y. L. Mo, R. M. Xu, B. Yan, and X. Q. Xie, IEEE Transactions on Plasma Science 33, 2017 (2006).CrossRefADSGoogle Scholar
  17. 17.
    I. G. Tigelis, M. Pedrozzi, P. G. Cottis, and J. L. Vomvoridis, IEEE Transaction Microwave Theory 45, 236 (1997).CrossRefGoogle Scholar
  18. 18.
    G. P. Anastasiou, G. P. Latsas, I. G. Tigelis, M. Dehler, P. Queffelec, and N. Dasyras, IEEE Transactions on Plasma Science 32, 1310 (2004).CrossRefADSGoogle Scholar
  19. 19.
    M. Pedrozzi, S. Alberti, and M. Q. Tran, Int. Conf. IRMMW, Lake Buena Vista Florida 134, (1995).Google Scholar
  20. 20.
    J. H. Billen and L. M. Young, “Poisson / Superfish,” Los Alamos National Laboratory, LA-UR-96-1834, 1996.Google Scholar
  21. 21.
  22. 22.
    R. B. Neal, The Stanford Two-Mile Accelerator (W. A. Benjamin Inc., New York, 1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ioannis G. Tigelis
    • 1
  • Jean-Yves Raguin
    • 2
  • Zisis C. Ioannidis
    • 1
  • George P. Latsas
    • 1
  • Angelos J. Amditis
    • 3
  1. 1.Department of Electronics, Computers, Telecommunications and Control, Faculty of PhysicsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Paul Scherrer InstitutVilligen PSISwitzerland
  3. 3.Institute of Communication and Computer SystemsNational Technical University of AthensAthensGreece

Personalised recommendations