Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment

  • J. W. Radder
  • K. M. Likin
  • F. S. B. Anderson
  • D. T. Anderson


The HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11 + TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50 ms pulses and over 100 kW of launched power. Analysis of the microwave beam for 50 kW, 2 ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power.


Electron cyclotron heating Microwave transmission lines Stellarators Quasioptics 


  1. 1.
    F. S. B. Anderson, A. Almagri, D. T. Anderson, P. G. Mathews, J. N. Talmadge, and J. L. Shohet, Fusion Technology 27, 273 (1995).Google Scholar
  2. 2.
    A. Almagri, D. T. Anderson, P. H. Probert, J. L. Shohet, and J. N. Talmadge, IEEE Transactions on Plasma Science 27, 114 (1999).CrossRefADSGoogle Scholar
  3. 3.
    K. M. Likin, A. Abdou, A. F. Almagri, D. T. Anderson, F. S. B. Anderson, D. Brower, J. Canik, C. Deng, S. P. Gerhardt, W. Guttenfelder et al., Plasma Physics and Controlled Fusion 45, A133 (2003).CrossRefADSGoogle Scholar
  4. 4.
    T. S. Bigelow, T. L. White, and H. D. Kimrey, Journal of Microwave Power 21, 88 (1986).Google Scholar
  5. 5.
    K. Felch, H. Huey, and H. Jory, Journal of Fusion Energy 9, 59 (1990).CrossRefGoogle Scholar
  6. 6.
    M. K. Thumm and W. Kasparek, IEEE Transactions on Plasma Science 30, 755 (2002).CrossRefADSGoogle Scholar
  7. 7.
    P. F. Goldsmith, Qausioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (Wiley–IEEE Press, New York, 1998).Google Scholar
  8. 8.
    S. N. Vlasov, M. A. Shapiro, and K. M. Likin, Optics Communications 88, 455 (1992).CrossRefADSGoogle Scholar
  9. 9.
    J. D. Hanfling, G. Jerinic, and L. R. Lewis, IEEE Transactions on Antennas and Propagation AP-29, 622 (1981).CrossRefADSGoogle Scholar
  10. 10.
    P. D. Potter, Microwave Journal 71–78 (1963).Google Scholar
  11. 11.
    V. I. Kurbatov, S. A. Malygin, V. B. Orlov, E. A. Solujanova, and E. M. Tai, in The Fifth International Kharkov Symposium Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves 2004, vol. MSMW’04.Google Scholar
  12. 12.
    A. Bruschi, S. Cirant, F. Gandini, G. Granucci, V. Mallera, V. Muzzini, A. Nardone, A. Simonetto, C. Sozzi, and N. Spinicchia, Nuclear Fusion 43, 1513 (2003).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. W. Radder
    • 1
    • 2
  • K. M. Likin
    • 1
  • F. S. B. Anderson
    • 1
  • D. T. Anderson
    • 1
  1. 1.HSX Plasma LaboratoryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Electrical and Computer EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations