Skip to main content
Log in

Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11 + TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50 ms pulses and over 100 kW of launched power. Analysis of the microwave beam for 50 kW, 2 ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. S. B. Anderson, A. Almagri, D. T. Anderson, P. G. Mathews, J. N. Talmadge, and J. L. Shohet, Fusion Technology 27, 273 (1995).

    Google Scholar 

  2. A. Almagri, D. T. Anderson, P. H. Probert, J. L. Shohet, and J. N. Talmadge, IEEE Transactions on Plasma Science 27, 114 (1999).

    Article  ADS  Google Scholar 

  3. K. M. Likin, A. Abdou, A. F. Almagri, D. T. Anderson, F. S. B. Anderson, D. Brower, J. Canik, C. Deng, S. P. Gerhardt, W. Guttenfelder et al., Plasma Physics and Controlled Fusion 45, A133 (2003).

    Article  ADS  Google Scholar 

  4. T. S. Bigelow, T. L. White, and H. D. Kimrey, Journal of Microwave Power 21, 88 (1986).

    Google Scholar 

  5. K. Felch, H. Huey, and H. Jory, Journal of Fusion Energy 9, 59 (1990).

    Article  Google Scholar 

  6. M. K. Thumm and W. Kasparek, IEEE Transactions on Plasma Science 30, 755 (2002).

    Article  ADS  Google Scholar 

  7. P. F. Goldsmith, Qausioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (Wiley–IEEE Press, New York, 1998).

    Google Scholar 

  8. S. N. Vlasov, M. A. Shapiro, and K. M. Likin, Optics Communications 88, 455 (1992).

    Article  ADS  Google Scholar 

  9. J. D. Hanfling, G. Jerinic, and L. R. Lewis, IEEE Transactions on Antennas and Propagation AP-29, 622 (1981).

    Article  ADS  Google Scholar 

  10. P. D. Potter, Microwave Journal 71–78 (1963).

  11. V. I. Kurbatov, S. A. Malygin, V. B. Orlov, E. A. Solujanova, and E. M. Tai, in The Fifth International Kharkov Symposium Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves 2004, vol. MSMW’04.

  12. A. Bruschi, S. Cirant, F. Gandini, G. Granucci, V. Mallera, V. Muzzini, A. Nardone, A. Simonetto, C. Sozzi, and N. Spinicchia, Nuclear Fusion 43, 1513 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Radder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radder, J.W., Likin, K.M., Anderson, F.S.B. et al. Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment. Int J Infrared Milli Waves 29, 360–372 (2008). https://doi.org/10.1007/s10762-008-9333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9333-1

Keywords

Navigation