Effect of Eccentricity on Transmission in a Coaxial Bragg Structure



In practice a coaxial Bragg structure always has an eccentricity between the outer-wall and inner-rod axes. Numerical simulations are carried out to analyze the effect of the eccentricity on the transmission in a coaxial Bragg structure. Results demonstrate that the effect of the eccentricity is minimized and becomes negligible when the phase difference between the outer and inner corrugations is π, no matter if the eccentricity is parallel or oblique.


Coaxial Bragg structure Eccentricity Corrugation phase difference Transmission 



This work was supported mainly by the National Natural Science Foundation of China (No.60471038). The authors would like to express their thanks to Dr. X.-D. Cui for useful discussion on the numerical simulations.


  1. 1.
    A. Yariv, and M. Nakamura, “Periodic Structures for Integrated Optics”, IEEE J. Quantum Electron. QE-13, 233–253, Apr. (1977).Google Scholar
  2. 2.
    H. Kogelnik, and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Laser,” J. Appl. Phys. 43, 2327–2335, May (1972).CrossRefADSGoogle Scholar
  3. 3.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Modeling the Flow of Light, New Jersey: Princeton University Press, 1995.Google Scholar
  4. 4.
    V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, “FEL’s with Bragg reflection resonators: Cyclotron Autoresonance Masers vesus Ubitrons,” IEEE J. Quantum Electronics, QE-19, 282–293, Mar. (1983).Google Scholar
  5. 5.
    A. J. Palmer, “Coupled-mode theory of overmoded cylindrical metal Bragg-reflectors,” IEEE J. Quantum Electron. QE-23, 65–70, Jan. (1987).Google Scholar
  6. 6.
    R. B. McCowan, A. W. Fliflet, S. H. Gold, V. L. Granatstein, and M. C. Wang, “Design of a waveguide resonator with rippled wall reflectors for a 100 GHz CARM oscillator experiment,” Int. J. Electron. 65, 463–475, (1988).CrossRefGoogle Scholar
  7. 7.
    R. B. McCowan et al., “The Design of a 100-GHz CARM oscillator experiment,” IEEE Trans. Electron Devices. 36, 1968–1975, Sept. (1989).CrossRefGoogle Scholar
  8. 8.
    C. K. Chong et al., “Bragg reflecors,” IEEE Trans. Plasma Sci. 20, 393–402, Jun. (1992).CrossRefADSGoogle Scholar
  9. 9.
    S. Alberti et al., “Experimental Study of a 28 GHz High-Power Long-Pulse Cyclotron Autoresonance Maser Oscillator,” Phys. Rev. Lett. 71, 2018–2021, Sept. (1993).CrossRefADSGoogle Scholar
  10. 10.
    N. S. Ginzburg et al., “The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser,” Phys. Plasmas. 9, 2798–2802, Jun. (2002).CrossRefADSGoogle Scholar
  11. 11.
    P. McGrane, I. V. Konoplev, K. Ronald, A. W. Cross and A. D. R. Phelps, “Experimental and theoretical study of constructive and destructive wave interference in a coaxial 1D Bragg structure,” in Joint 29th Int. Conf. Infrared Millimeter Waves and 12th Int. Conf. on Terahertz Electronics Dig., Karlsruhe, pp. 177–178, (2004).Google Scholar
  12. 12.
    I. V. Konoplev et al., “Progress of the Strathclyde Free Electron Maser experiment using 2D Bragg structure,” Nucl. Instr. and Meth. A. 445, 236–240, (2000).CrossRefADSGoogle Scholar
  13. 13.
    I. V. Konoplev, P. McGrane, A. W. Cross, K. Ronald, and A. D. R. Phelps, “wave interference and band control in multiconductor one-dimensional Bragg structures,” J. Appl. Phys. 97, 073101-1–073101-7, Mar. (2005).Google Scholar
  14. 14.
    I. V. Konoplev, P. McGrane, A. D. R. Phelps, A. W. Cross, and K. Ronald, “Observation of photonic band-gap control in one-dimensional Bragg structures”, Appl. Phys. Lett. 87, 121104, (2005).CrossRefADSGoogle Scholar
  15. 15.
    J. J. Barroso, and J. P. Leite Neto, “Design of coaxial Bragg reflectors,” IEEE Trans. Plasma Sci. 34, 666–672, Jun. (2006).CrossRefGoogle Scholar
  16. 16.
    Y. X. Lai, and S. C. Zhang, “Coaxial Bragg reflector with a corrugated inner rod”, IEEE Microw. Wirel. Compon. Lett.. 17, 328–331, May (2007).CrossRefGoogle Scholar
  17. 17.
    S.-C. Zhang, and M. Thumm, “Gyrokinetic description of the structural eccentricity on the strating current of a coaxial-cavity gyrotron,” Phys. Plasmas. 20, 157–170, (1999).Google Scholar
  18. 18.
    S.-C. Zhang, and M. Thumm, “Eigenvalue equations and numerical analysis of a coaxial cavity with misaligned inner rod,” IEEE Trans. Microwave Theor. Tech. 48, 8–14, Jan. (2000).CrossRefGoogle Scholar
  19. 19.
    Computer Simulation Technology (CST), User’s Manual 5, in CST-Microwave Studio, (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of PhotoelectronicsSouthwest Jiaotong UniversityChengdu SichuanPeople’s Republic of China

Personalised recommendations