Properties of Building and Plastic Materials in the THz Range

  • R. Piesiewicz
  • C. Jansen
  • S. Wietzke
  • D. Mittleman
  • M. Koch
  • T. Kürner


We present measurements of the frequency dependent refractive index and absorption coefficient of a variety of common building and plastic materials between 100 and 1000 GHz. Accurate knowledge of the material parameters is indispensable for the modeling of bound media propagation phenomena including single and multiple reflections, transmission, diffraction and scattering effects. These models are for example required for a reliable channel simulation to investigate signal propagation in future wireless communication systems operating with Gigabit data rates at frequencies above 100 GHz. Also, the measured material parameters can be used for the investigation and development of THz system components.


Material properties Millimeterwaves Submillimeterwaves Terahertz THz channel modeling 



The authors thank Dr. Martin Bastian and Dr. Karsten Kretschmer from Süddeutsches Kunststoff-Zentrum, Würzburg, Germany, for providing the samples P7 and P8.


  1. 1.
    T. Nagatsuma, Exploring sub-terahertz waves for future wireless communications, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 4.Google Scholar
  2. 2.
    A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. Microwave Theor. Tech. 54(5), 1937–1944 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Cherry, Edholm’s law of bandwidth, IEEE Spectr. 41, 19–50 (2004).Google Scholar
  4. 4.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, and T. Kürner, Concept and perspectives of future ultra broadband THz communication systems, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 96.Google Scholar
  5. 5.
    R. Piesiewicz, J. Jemai, M. Koch, and T. Kürner, THz channel characterization for future wireless gigabit indoor communication systems, SPIE Intl. Symp. on Integrated Optoelectronic Devices, Terahertz and Gigahertz Electronics and Photonics IV, Vol. 5727, San Jose, USA, January 2005, pp. 166–176.Google Scholar
  6. 6.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, and T. Kürner, Terahertz characterisation of building materials, IEE Electron. Lett. 41(18), 1002–1004 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Born and E. Wolf, Principles of Optics. (Pergamon Press, 1964), pp. 36–47.Google Scholar
  8. 8.
    D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction. (Artech House, 1990).Google Scholar
  9. 9.
    A. G. Dimitriou and G. D. Sergiadis, Architectural features and urban propagation, IEEE Trans. Antennas Propag. 54(3), 774–784 (2006).CrossRefGoogle Scholar
  10. 10.
    K. F. Warnick and W. C. Chew, Numerical simulation methods for rough surface scattering, IoP Waves in Random Media 11(1), R1–R30 (2001).MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, 1987), pp. 80–98.Google Scholar
  12. 12.
    J. W. Lamb, Miscellaneous data on materials for millimetre and submillimetre optics, Int. J. IR Millim. Waves 17(12), 1997–2034 (1996).CrossRefGoogle Scholar
  13. 13.
    G. J. Simonis, Index to the literature dealing with the near millimeter-wave properties of materials, Int. J. IR Millim. Waves 3(4), 439–469 (1982).CrossRefADSGoogle Scholar
  14. 14.
    N. Hiromoto, R. Fukasawa, and I. Hosako, Measurement of optical properties of construction materials in the terahertz region, IEEE 31th Intl. Conf. on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September 2006, p. 157.Google Scholar
  15. 15.
    M. Hangyo, M. Tani, and T. Nagashima, Terahertz time-domain spectroscopy of solids: a review, Int. J. IR Millim. Waves 26(12), 1661–1690 (2005).CrossRefGoogle Scholar
  16. 16.
    D. Mittleman, Terahertz Imaging, in Sensing with Terahertz Radiation, edited by D. Mittleman (Springer, 2003), pp. 117–153.Google Scholar
  17. 17.
    L. Duvillaret, F. Garet, and J.-L. Coutaz, A reliable method for extraction of material parameters in Terahertz time-domain spectroscopy, IEEE J. Quantum Electron. 2(3), 739–746 (1996).CrossRefGoogle Scholar
  18. 18.
    P. U. Jepsen and B. M. Fischer, Dynamic range in terahertz time-domain transmission and reflection spectroscopy, Optics Lett. 30(1), 29–31 (2005).CrossRefADSGoogle Scholar
  19. 19.
    R. S. Burington and D. Curtis, Handbook of Probability and Statistics with Tables (McGraw-Hill Book Company, 1970), p. 111.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Piesiewicz
    • 1
    • 4
  • C. Jansen
    • 2
  • S. Wietzke
    • 2
    • 4
  • D. Mittleman
    • 3
  • M. Koch
    • 2
    • 4
  • T. Kürner
    • 1
    • 4
  1. 1.Institut für NachrichtentechnikTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Institut für HochfrequenztechnikTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Electrical and Computer Engineering DepartmentRice UniversityHoustonUSA
  4. 4.Terahertz Communications LabTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations