A New Approach for the Analysis of Planar Distributed Two-Dimentional (2-D) Left-Haned (Lh) Structures

  • Chao Li
  • Kaiyu Liu
  • Fang Li


A new approach is proposed to analyze planar distributed 2-D LH structures. The 4-port S parameters of the unit cell combined with the Bloch-Floquet theory are used to determine the dispersion relations and Bloch impedance. The LH and RH frequency bands are identified by the signs of the real parts of the wave number and the Bloch impedance. Several advantages of the new approach over the previous unit cell analysis methods are presented. As an example, a capacitance-enhanced LH structure is designed and analyzed with the new approach. FDTD simulation is also performed to study the periodic LH structure with infinite arrays. The results of the simulation at the LH frequency band show the backward wave properties in consistent with those obtained by the proposed approach.


Left-handed (LH) structures S parameters Bloch impedance Backward wave 



This work is supported in part by the National Natural Science Foundation of China under Grant No. 60501018, in part by the National Basic Research Program of China under Grant No. 2004CB719800, and in part by the Foundation of the National Key Laboratory of Microwave Imaging Technology under Grant No. 9140C190401060C19.


  1. 1.
    V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and μ, Sovet. Phys. Uspekhi. 10, 509–514 (1968).CrossRefGoogle Scholar
  2. 2.
    D. R. Smith, W. J. Padilla, D. C. Vier et al., Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84, 4184–4187 (2000).CrossRefADSGoogle Scholar
  3. 3.
    R. A.Shelby, D. R. Smith, S. Schultz, Experimental Verification of a Negative Index of Refraction, Science 292, 77–79 (2001).CrossRefADSGoogle Scholar
  4. 4.
    G. V. Eleftheriades, A. K. Iyer, P. C. Kremer, Planar negative refractive index media using periodically L-C loaded transmission lines, IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).CrossRefGoogle Scholar
  5. 5.
    C. Caloz, T. Itoh, Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line, IEEE AP-S Int. Symp. Dig. 2, 412–415 (2002).Google Scholar
  6. 6.
    C. Caloz, T. Itoh, Novel microwave devices and structures based on the transmission line approach of meta-materials, IEEE-MTT Int. Symp. Dig. 1, 195–198 (2003).Google Scholar
  7. 7.
    A. Sanada, C. Caloz, T. Itoh, Characteristics of the composite right/left-handed transmission lines, IEEE Microwave and Wireless Components Lett. 14, 68–70 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Grbic, G. V. Eleftheriades, Experimental verification of backward wave radiation from a negative refractive index material, J. Appl. Phys. 92, 5930–5935 (2002).CrossRefADSGoogle Scholar
  9. 9.
    C. Caloz, A. Sanada, L. Liu, T. Itoh, A broadband left-handed (LH) coupled-line backward coupler with arbitrary coupling level, IEEE MTT-S Int. Microwave Symp. Dig. 1, 317–320 (2003).Google Scholar
  10. 10.
    A. Sanada, C. Caloz, T. Itoh, Novel zeroth-order resonance in composite right/left-handed transmission line resonator, Proc. Asia-Pacific Microwave Conf. 1588–1591 (2003).Google Scholar
  11. 11.
    A. K. Iyer, G. V. Eleftheriades, Negative refractive index metamaterials supporting 2-D wave propagation, IEEE MTT-S Int. Microwave Symp. Dig. 2, 1067–1070 (2002).Google Scholar
  12. 12.
    A. Sanada, C. Caloz, T. Itoh, 2D distributed meta-structures with negative refractive properties, IEEE AP-S Int. Symp. Dig. 1, 4–10 (2003).Google Scholar
  13. 13.
    C. Caloz, A. Lai, T. Itoh, Wave interactions in a Left-handed mushroom structure, IEEE AP-S Int. Symp. Dig. 2, 1403–1406 (2004).Google Scholar
  14. 14.
    A. Grbic, G. V. Eleftheriades, Periodic analysis of a 2-D negative refractive index transmission line structure, IEEE Trans. Antenna and Propagation 51, 2604–2611 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Sanada, C. Caloz, T. Itoh, Planar distributed structures with negative refraction index, IEEE Trans. Microwave Theory Tech. 52, 1252–1263 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of ElectronicsChinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations