Skip to main content
Log in

LIGHTWAVE PROPAGATION IN SUBWAVELENGTH HOLES

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In this paper we evaluate methods for calculating dispersion relations for waves with wavelengths of the order of hundreds of nanometres propagating in square waveguides with imperfectly conducting walls. The methods considered here are based on those used previously for rectangular dielectric waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Ebbesen, H. E. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  2. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), Chap. 1.

    Google Scholar 

  3. J.A. Stratton, Electromagnetic Theory, (McGraw-Hill, New York, 1941), p. 526.

    MATH  Google Scholar 

  4. P.B. Catrysse, H. Shin and S. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B 23/6, 2675–2678 (2005).

    Article  Google Scholar 

  5. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex metallic dielectric function,” Phys. Rev. E 50/5, 4094–4106 (1994).

    Article  ADS  Google Scholar 

  6. E.A. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell System Tech. J. 48, 2071–2102 (1969).

    Google Scholar 

  7. V.J. Menon, S. Bhattacharjee and K.K. Dey, “The rectangular dielectric waveguide revisited,” Optics Communications 85, 393–396 (1991).

    Article  ADS  Google Scholar 

  8. A. S. Sudbø, “Why are accurate computations of mode fields in rectangular dielectric waveguides difficult?” J. Lightwave Technology 10/4, 418–419 (1992).

    Article  ADS  Google Scholar 

  9. R.M. Knox and P.P. Tulios Proc. of the MRI Symposium on Submillimeter Waves, ed. J. Fox (Brooklyn: Polytechnic Press 1970) p. 497.

    Google Scholar 

  10. S.P. Pogossian, H. Le Gall, J. Gieraltowski and J. Loaec, “Determination of the parameters of rectangular dielectric waveguides by new effective index methods,” J. Modern Optics 42/2, 403–409 (1995).

    ADS  Google Scholar 

  11. E.A. Marcatili and A.A. Hardy, “The azimuthal effective-index method,” IEEE J Quantum Electonics 24/5, 766–774 (1988).

    Article  ADS  Google Scholar 

  12. J.E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell System Tech. J. 48, 2133–2160 (1969).

    Google Scholar 

  13. S.M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides,” IEEE Trans. Microwave Theory and Techniques 33/10, 894–897 (1985).

    Article  ADS  Google Scholar 

  14. R. Gordon and A.G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Optics Express 13/6, 1933–1938 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, G.F. LIGHTWAVE PROPAGATION IN SUBWAVELENGTH HOLES. Int J Infrared Milli Waves 27, 1445–1456 (2006). https://doi.org/10.1007/s10762-006-9148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9148-x

Key Words

Navigation