Advertisement

LIGHTWAVE PROPAGATION IN SUBWAVELENGTH HOLES

  • G. F. Brand
Article

Abstract

In this paper we evaluate methods for calculating dispersion relations for waves with wavelengths of the order of hundreds of nanometres propagating in square waveguides with imperfectly conducting walls. The methods considered here are based on those used previously for rectangular dielectric waveguides.

Key Words

waveguides dispersion relation cutoff subwavelength imperfect conductor surface plasmon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. W. Ebbesen, H. E. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).CrossRefADSGoogle Scholar
  2. [2]
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), Chap. 1.Google Scholar
  3. [3]
    J.A. Stratton, Electromagnetic Theory, (McGraw-Hill, New York, 1941), p. 526.MATHGoogle Scholar
  4. [4]
    P.B. Catrysse, H. Shin and S. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B 23/6, 2675–2678 (2005).CrossRefGoogle Scholar
  5. [5]
    L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex metallic dielectric function,” Phys. Rev. E 50/5, 4094–4106 (1994).CrossRefADSGoogle Scholar
  6. [6]
    E.A. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell System Tech. J. 48, 2071–2102 (1969).Google Scholar
  7. [7]
    V.J. Menon, S. Bhattacharjee and K.K. Dey, “The rectangular dielectric waveguide revisited,” Optics Communications 85, 393–396 (1991).CrossRefADSGoogle Scholar
  8. [8]
    A. S. Sudbø, “Why are accurate computations of mode fields in rectangular dielectric waveguides difficult?” J. Lightwave Technology 10/4, 418–419 (1992).CrossRefADSGoogle Scholar
  9. [9]
    R.M. Knox and P.P. Tulios Proc. of the MRI Symposium on Submillimeter Waves, ed. J. Fox (Brooklyn: Polytechnic Press 1970) p. 497.Google Scholar
  10. [10]
    S.P. Pogossian, H. Le Gall, J. Gieraltowski and J. Loaec, “Determination of the parameters of rectangular dielectric waveguides by new effective index methods,” J. Modern Optics 42/2, 403–409 (1995).ADSGoogle Scholar
  11. [11]
    E.A. Marcatili and A.A. Hardy, “The azimuthal effective-index method,” IEEE J Quantum Electonics 24/5, 766–774 (1988).CrossRefADSGoogle Scholar
  12. [12]
    J.E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell System Tech. J. 48, 2133–2160 (1969).Google Scholar
  13. [13]
    S.M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides,” IEEE Trans. Microwave Theory and Techniques 33/10, 894–897 (1985).CrossRefADSGoogle Scholar
  14. [14]
    R. Gordon and A.G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Optics Express 13/6, 1933–1938 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. F. Brand
    • 1
  1. 1.School of PhysicsUniversity of SydneyNSWAustralia

Personalised recommendations