Advertisement

International Journal of Infrared and Millimeter Waves

, Volume 27, Issue 9, pp 1195–1207 | Cite as

MONTE CARLO STUDY OF SPATIO-TEMPORAL DISTRIBUTIONS OF PHOTO-DEMBER FIELD AND THZ RADIATION FROM InAs

  • Dong-feng Liu
  • Du Xu
Article

Abstract

The spatio-temporal distributions of photo-Dember fields on the semiconductor surface of InAs and the pump wavelength-dependent dynamics of THz radiation from this semiconductor have been investigated with the method of ensemble Monte Carlo Simulation. Our simulations not only confirm the experimental results [P. Gu et al., J. Appl. Phys. 91, 5533(2002)] that the pump wavelength-dependent feature of THz pulse amplitudes for InAs is completely different with that for GaAs, but also point out that the corresponding mechanism is the characteristics of photo-Dember fields.

Keywords

THz radiation photo-Dember field InAs Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.-C. Zhang and D. H. Auston, Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics, J. Appl. Phys. 71(1992), 326–338.CrossRefADSGoogle Scholar
  2. 2.
    P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, Study of terahertz radiation from InAs and InSb, J. Appl. Phys. 91(2002), 5533–5537.CrossRefADSGoogle Scholar
  3. 3.
    G.-R. Lin, C.-L. Pan, Characterization of optically-excited terahertz radiation from Arsenic-ion-implanted GaAS, Appl. Phys. B 72 (2001), 151–155.ADSGoogle Scholar
  4. 4.
    R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity, J. Appl. Phys. 95(2004), 2141–2145.CrossRefADSGoogle Scholar
  5. 5.
    M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, Emission of collimated THz pulses from photo-excited semiconductors, Semicond. Sci. Technol. 19(2004), S449–s451.CrossRefADSGoogle Scholar
  6. 6.
    M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Simulation of terahertz generation at semiconductor surfaces, Phys. Rev. B 65(2002), 165301. 1.Google Scholar
  7. 7.
    C. Weiss, R. Wallenstein, and R. Beigang, Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces, Appli. Phys. Lett. 77(2000), 4160–4162.CrossRefADSGoogle Scholar
  8. 8.
    Dongfeng Liu, and Jiayin Qin, The effects of optical pump parameters on THz temporal waveforms from large-aperture photoconductive antenna, J. of Luminescence 116(2006), 28–34.CrossRefGoogle Scholar
  9. 9.
    T. Hattori, S. Arai, and K. Tukamoto, Ultrafast Electron Dynamics in GaAs and InP Studied by Time-Resolved Terahertz Emission Spectroscopy, Japanese J. of Appl. Phys. 43(2004), 7546–7551.CrossRefGoogle Scholar
  10. 10.
    C. Jacoboni, and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials, Rev. Mod. Phys. 55(1983), 645–705.CrossRefADSGoogle Scholar
  11. 11.
    http://www.ioffe.rssi.ru: parameters of semiconductor Physics for InAs are from this web.
  12. 12.
    U. Ravaioli, P. Lugli, M. A. Osman, and D. K. Ferry, IEEE Trans. Electr. Dev., ED-32(1985), 2097–2101.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.School of Information EngineeringGuangDong University of TechnologyGuangzhouP. R. China

Personalised recommendations