Skip to main content
Log in

NEURAL MODELS FOR THE BROADSIDE-COUPLED V-SHAPED MICROSHIELD COPLANAR WAVEGUIDES

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

This article presents a new approach based on multilayered perceptron neural networks (MLPNNs) to calculate the odd-and even-mode characteristic impedances and effective permittivities of the broadside-coupled V-shaped microshield coplanar waveguides (BC-VSMCPWs). Six learning algorithms, bayesian regulation (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Powell (CGF), are used to train the MLPNNs. The neural results are in very good agreement with the results reported elsewhere. When the performances of neural models are compared with each other, the best and worst results are obtained from the MLPNNs trained by the BR and CGF algorithms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dib, N. I.; Harokopus, W. P.; Katehi, L. P. B.; Ling, C. C.; Rebeiz, G. M.: Study of a novel planar transmission line. IEEE MTT-S Int. Microwave Symp. Dig., Boston, 1991, 623–626.

    Google Scholar 

  2. Dib, N. I.; Katehi, L. P. B.: Impedance calculation for the microshield line. IEEE Microwave and Guided Wave Lett. 2 (1992), 406–408.

    Article  Google Scholar 

  3. Schutt-Aine, J. E.: Static analysis of V transmission lines. IEEE Trans. Microwave Theory Techniques 40 (1992), 659–664.

    Article  Google Scholar 

  4. Yuan, N.; Ruan, C.; Lin, W.: Analytical analyses of V, elliptic, and circularshaped microshield transmission lines. IEEE Trans. Microwave Theory Techniques 42 (1994), 855–859.

    Article  Google Scholar 

  5. Cheng, K. K. M.; Robertson, I. D.: Quasi-TEM study of microshield lines with practical cavity sidewall profiles. IEEE Trans. Microwave Theory Techniques 43 (1995), 2689–2694.

    Article  Google Scholar 

  6. Cheng, K. K. M.; Robertson, I. D.: Simple and explicit formulas for the design and analysis of asymmetrical V-shaped microshield line. IEEE Trans. Microwave Theory Techniques 43 (1995), 2501–2504.

    Article  Google Scholar 

  7. Kiang, J. F.: Characteristic impedance of microshield lines with arbitrary shield cross section. IEEE Trans. Microwave Theory Techniques 46 (1998), 1328–1331.

    Article  Google Scholar 

  8. Yan, Y.; Pramanick, P.: Finite-element analysis of generalized V-and W-shaped edge and broadside-edge-coupled shielded microstrip line on anisotropic medium. IEEE Trans. Microwave Theory Techniques 49 (2001), 1649–1657.

    Article  Google Scholar 

  9. Lu, M.; Leonard, P. J.: Edge-based finite-element analysis of the field patterns in V-shaped microshield line. Microwave and Opt. Technol. Lett. 41 (2004), 43–47.

    Article  Google Scholar 

  10. Lu, M.; Leonard, P. J.; Fan, D. W; Xu, F. Y.: On the cutoff wavelength of rectangular-shaped microshield line by edge element method. International Journal of Infrared and Millimeter Waves 25 (2004), 1469–1479.

    Article  Google Scholar 

  11. Ashesh, C. B.; Bhattacharya, D.; Garg, R.: Characterization of V-groove coupled microshield line. IEEE Microwave and Wireless Components Letters 15 (2005), 110–112.

    Article  Google Scholar 

  12. Dalley, J. E.: A strip-line directional coupler utilizing a non-homogeneous dielectric medium. IEEE Trans. Microwave Theory and Techniques 17 (1969), 706–712.

    Article  Google Scholar 

  13. Allen, J. L.; Estes, M. F.: Broadside-coupled strips in a layered dielectric medium. IEEE Trans. Microwave Theory and Techniques 20 (1972), 662–669.

    Article  Google Scholar 

  14. Hatsuda, T.: Computation of coplanar-type strip-line characteristics by relaxation method and its application to microwave circuits. IEEE Transactions Trans. Microwave Theory and Techniques 23 (1975), 795–802.

    Article  ADS  Google Scholar 

  15. Bedair, S. S.; Wolff, I.: Fast and accurate analytic formulas for calculating the parameters of a general broadside-coupled coplanar waveguide for (M)MIC applications. IEEE Trans. Microwave Theory and Techniques 37 (1989), 843–850.

    Article  ADS  Google Scholar 

  16. Nguyen, C.: Broadside-coupled coplanar waveguides and their end-coupled band-pass filter applications. IEEE Trans. Microwave Theory and Techniques 40 (1992), 2181–2189.

    Article  ADS  Google Scholar 

  17. Karpuz, C.; Duyar, M.; Gorur, A.: Quasi-TEM analysis of broadside-coupled V-shaped microshield coplanar waveguides. Microwave and Opt. Technol. Lett. 26 (2000), 229–232.

    Article  Google Scholar 

  18. Zhang, Q. J.; Gupta K. C.: Neural networks for RF and microwave design. Boston MA.: Artech House, 2000.

    Google Scholar 

  19. Christodoulou, C. G.; Georgiopoulos, M.: Application of neural networks in electromagnetics. MA.: Artech House, 2001.

    Google Scholar 

  20. Yildiz, C.; Gultekin, S.; Guney, K.; Sagiroglu, S.: Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor. AEU-International Journal of Electronics and Communications 56 (2002), 396–406.

    Article  Google Scholar 

  21. Yildiz, C.; Saracoglu, O.: Simple models based on neural networks for suspended and inverted microstrip lines. Microwave and Opt. Technol. Lett. 39 (2003), 383–389.

    Article  Google Scholar 

  22. Yildiz, C.; Turkmen, M.: A CAD approach based on artificial neural networks for shielded multilayered coplanar waveguides. AEU-International Journal of Electronics and Communications 58 (2004), 284–292.

    Article  Google Scholar 

  23. Yildiz, C.; Sagiroglu, S.; Turkmen, M.: Neural model for coplanar waveguide sandwiched between two dielectric substrates. IEE Proceedings-Microwaves, Antennas and Propagation 151 (2004), 7–12.

    Article  Google Scholar 

  24. Guney, K.; Yildiz C.; Kaya, S.; Turkmen, M.: Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines. Accepted for publishing in Journal of Electromagnetic Waves and Applications.

  25. Mackay, D. J. C.: Bayesian interpolation. Neural Computation 4 (1992), 415–447.

    Google Scholar 

  26. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944), 164–168.

    MATH  MathSciNet  Google Scholar 

  27. Marquardt, D. W.: An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963), 431–441.

    Article  MATH  MathSciNet  Google Scholar 

  28. Gill, P. E.; Murray, W.; Wright, M. H.: Practical optimization. New York: Academic Pres., 1981.

    MATH  Google Scholar 

  29. Moller, M. F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1993), 525–533.

    Article  Google Scholar 

  30. Reidmiller, M.; Braun, H.: A direct adaptive method for faster backpropagation learning: the Rprop algorithm. Proceedings of the IEEE Int. Conf. on Neural Networks, San Francisc, CA, 1993, 586–591.

  31. Scales, E.: Introduction to non-linear optimization. New York: Springer-Verlag, 1985.

    Google Scholar 

  32. Fletcher, R.; Reeves, C. M.: Function minimization by conjugate gradients. Comput. J. 7 (1964), 149–154.

    Article  MATH  MathSciNet  Google Scholar 

  33. Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W.: Numerical Recipes. The Art of Scientic Computing, Cambridge, England: Cambridge Univ. Press, 1986.

    Google Scholar 

  34. Haykin, S.: Neural networks: A comprehensive foundation. New York: Macmillan College Publishing Comp., 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Guney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, K., Yildiz, C., Kaya, S. et al. NEURAL MODELS FOR THE BROADSIDE-COUPLED V-SHAPED MICROSHIELD COPLANAR WAVEGUIDES. Int J Infrared Milli Waves 27, 1241–1255 (2006). https://doi.org/10.1007/s10762-006-9132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9132-5

Keywords

Navigation