• Zilong Liu
  • Jihai Yu
  • Daqing Zhu


In this article, rectangle, trapezoidal and T type microstrip lines embedded into up cladding of the waveguide are designed. By the analysis of the finite element method (FEM), this embedded microstrip line has perfect velocity matching between the electric signal and lightwave carrier and at the same time, conductor loss of the trapezoidal and T type microstrip lines also reduce. Thus the modulator’s bandwidth increases greatly. Calculations show that, comparing with one of non-embedded rectangle microstrip line which is the most familiar configuration of polymer modulator, the optical 3-dB bandwidths of embedded trapezoidal and T type microstrip increase 264% and 339% respectively under the condition of impedance matching.

Key words

Optoelectronics Electro-Optic Modulators Modulation Bandwidth Polymer Waveguide Microstrip Line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emmanuel Van Tomme, Peter P. Van Daele, Roel G. Baets and Paul E. Lagasse, “Integrated Optic Devices Based Nonlinear Optical Polymer”, IEEE Journal of Quantum Electronics, 27 (1991), 778–787CrossRefADSGoogle Scholar
  2. 2.
    René M. de Ridder, Alfred Driessen, Erwin Rikkers, Paul V. Lambeck and Mart B.J. Diemeer, “Design and fabrication of electro-optic polymer modulators and switches”, Optical Materials, 12 (1999), 205–214CrossRefGoogle Scholar
  3. 3.
    M. H. Lee, H. J. Lee, S. G. Han, H. Y. Kim, Y. H. Won and S. Y. Kang, “Fabrication and Characterization of an Electro-optic Polymer Waveguide Modulator for Photonic Applications”, Thin Solid Films, 303 (1997), 287–291CrossRefGoogle Scholar
  4. 4.
    William H. Steier, Antao Chen, Sang-Shin Lee, et al., “Polymer electro-optic devices for integrated optics”, Chemical Physics, 245 (1999), 487–506CrossRefGoogle Scholar
  5. 5.
    Y. Shi, C. Zhang, H. Zhang, et al., “Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-Optic Modulators Achieved by Controlling Chromophore Shape”, Science, 288 (2000), 119–122CrossRefADSGoogle Scholar
  6. 6.
    Datong Chen, Harold R. Fetterman, Antao Chen, et al., “Demonstration of 110 GHz electro-optic polymer modulators”, Appl. Phys. Lett., 70 (1997), 3335–3337CrossRefADSGoogle Scholar
  7. 7.
    Mark Lee, Howard E. Katz, Christoph Erben, et al., “Broadband Modulation of Light by Using an Electro-Optic Polymer”, Science, 298 (2002), 1401–1403CrossRefADSGoogle Scholar
  8. 8.
    Keren Li and Kazuhiko Atsuki, “Low conductor loss microstrip lines with side-grooves”, IEEE MTT-S Digest, June 1996, vol. 1, 311–314Google Scholar
  9. 9.
    Zorica Pantić and Raj Mittra, “Quasi-TEM analysis of Microwave Transmission Lines by the Finite-Element Method”, IEEE, MTT-34 (1986), 1096–1103Google Scholar
  10. 10.
    H. A. wheeler, “Formulas for the skin effect”, Proc. IRE, 30 (1942), 412–424Google Scholar
  11. 11.
    Haibo Peng, Boyu Wu, Qiong Song, Fei Lu and Shuyun Luo, “Hybrid electrodes used in polymer electro-optic modulator with ultra-broadband”, International Journal of Infrared and Millimeter Waves, 24 (2003), 1587–1596CrossRefGoogle Scholar
  12. 12.
    Zilong Liu and Daqing Zhu, “The Effect of Conductor Loss on Half-Wave Voltage and Modulation Bandwidth of Electro-optic Modulators”, Chinese Optics Letters, 2 (2004), 586–589ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Zilong Liu
    • 1
  • Jihai Yu
    • 2
  • Daqing Zhu
    • 3
  1. 1.Department of PhysicsWuhan University of TechnologyWuhanChina
  2. 2.Department of PhysicsYichun UniversityJiangxiChina
  3. 3.Laboratory of Integrated Photonic Devices, Institute of Laser Technology & EngineeringHuzhong University of Science & TechnologyWuhanChina

Personalised recommendations