Advertisement

GAIN AND BANDWIDTH ANALYSIS OF A VANE-LOADED GYRO-TWT

  • G. Singh
  • M. V. Kartikeyan
  • G. S. Park
Article

Abstract

Theoretical investigation of the peak-gain and 3-dB bandwidth of the vane-loaded gyro-traveling wave tube (gyro-TWT) amplifier in the small-orbit TE01 waveguide mode configuration at 35 GHz has been presented. The vane-loaded gyro-TWT enjoys higher gain and bandwidth compared to that of the smooth-wall device. In the analysis, the azimuthal harmonic effects generated due to the angular periodicity of vanes in the wedge-shaped metal vane-loaded cylindrical waveguide interaction structure have been taken into account in the cold (beam-absent) dispersion relation only.

Keyword

Gyrotron amplifier bandwidth cyclotron resonance maser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Chu, The electron cyclotron maser, Rev. Mod. Phys., (2004), vol. 76, pp. 489–540.CrossRefADSGoogle Scholar
  2. 2.
    D. B. McDermott, A. J. Balkcum, and N. C. Luhmann, Jr., 35GHz, 25kW CW low-voltage third harmonie gyrotron, IEEE Trans. Plasma Sci., (1996), vol. 24, pp. 613–619.CrossRefGoogle Scholar
  3. 3.
    C. K. Chong, D. B. McDermott, A. T. Lin, W. J. DeHope, Q. S. Wang, and N. C. Luhmann, Jr., Stability of a 95GHz slotted third harmonic gyro-TWT amplifier, IEEE Trans. Plasma Sci, (1996), vol. 24, pp. 735–743.CrossRefGoogle Scholar
  4. 4.
    K. R. Chu, Overview of research on the gyrotron traveling wave amplifier, IEEE Trans. Plasma Sci., (2002), vol. 30, pp. 903–908.CrossRefGoogle Scholar
  5. 5.
    K. L. Flech, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, Characteristics and application of fast-wave gyro-devices, Proc. IEEE, (1999), vol. 87, pp. 752–781.CrossRefGoogle Scholar
  6. 6.
    G. Singh, M. V. Kartikeyan, A. K. Sinha, and B. N. Basu, Effects of beam and magnetic field parameters on highly competing TE01 and TE21 modes of vane-loaded gyro-TWT, Int. J. Infrared and Millimeter Waves, (2002), vol. 23, pp. 517–533.CrossRefGoogle Scholar
  7. 7.
    K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, Stabilization of absolute instabilities in the gyrotron traveling wave amplifier, Phys. Rev. Lett., (1995), vol. 74, pp. 1103–1106.CrossRefADSGoogle Scholar
  8. 8.
    K. R. Chu, H. Y. Chen, C. L. Jung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. J. Dialetis, Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier, IEEE Trans. Plasma Sci., (1999), vol. 27, pp. 391–404.CrossRefGoogle Scholar
  9. 9.
    D. B. McDermott, B. H. Deng, K. X. Liu, J. Van Meter, Q. S. Wang, and N. C. Luhmann, Jr., Stable 2MW, 35GHz, third harmonic TE41 gyro-TWT amplifier, IEEE Trans. Plasma Sci., (1998), vol. 26, pp. 482–487.CrossRefGoogle Scholar
  10. 10.
    D. E. Pershing, J. P. Calame, B. G. Danly, B. Levush, F. N. Wood, and M. Garven, A TE11 Ka band gyro-TWT amplifier with high average power compatible distributed loss, IEEE Trans. Plasma Sci., (2004), vol. 32, pp. 947–956.CrossRefGoogle Scholar
  11. 11.
    D. S. Furuno, D. B. McDermott, C. S. Kou, N. C. Luhmann, Jr., and P. Vitello, Theoretical and experimental investigation of high-harmonic gyro-traveling-wave-tube amplifier, Phys. Rev. Lett., (1989), vol. 62, pp. 1314–1317.CrossRefADSGoogle Scholar
  12. 12.
    W. W. Destler, D. W. Hugdgings, M. J. Rhee, S. Kawasaki, and V. L. Granatstein, Experimental study of microwave generation and suppression in a non-neutral E-layer, J. Appl. Phys., (1977), vol. 48, pp. 3291–3296.CrossRefADSGoogle Scholar
  13. 13.
    W. W. Destler, H. Romero, C. D. Striffler, R. L. Weiler, and W. Narnkung, Intense microwave generation from a non-neutral rotating E-layer, J. Appl. Phys., (1981), vol. 52, pp. 2740–2749.CrossRefADSGoogle Scholar
  14. 14.
    C. K. Chong, D. B. McDermott, A. J. Balkaum, and N. C. Luhmann, Jr., Nonlinear analysis of high harmonic gyro-TWT amplifier. IEEE Trans. Plasma Sci., (1992), vol. 20, pp.176–187.CrossRefADSGoogle Scholar
  15. 15.
    G. Singh, S.M.S. Ravi Chandra, P. V. Bhaskar, P.K. Jain, and B.N. Basu, Analysis of vane-loaded gyro-TWT for gain-frequency response, IEEE Trans. Plasma Sci., (2004), vol. 32, pp.2130–2138.CrossRefGoogle Scholar
  16. 16.
    Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Demonstration of marginal stability theory by 200kW second harmonic gyro-TWT amplifier, Phys. Rev. Lett., (1995), vol. 75, pp. 4322–4325.CrossRefADSGoogle Scholar
  17. 17.
    G. Singh, S.M.S. Ravi Chandra, P. V. Bhaskar, P.K. Jain, and B.N. Basu, Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for a gyro-traveling wave tube, Int. J. Electron., (1999), vol. 86, pp. 1463–1479.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. Singh
    • 1
  • M. V. Kartikeyan
    • 2
  • G. S. Park
    • 1
  1. 1.Vacuum Electrophysics Laboratory, School of PhysicsSeoul National UniversitySeoulKorea
  2. 2.Department of Electronics and Computer EngineeringIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations