Advertisement

ANALYSIS OF ARBITRARILY TRAPEZOIDAL-GROOVE GUIDE WITH THE CONFORMAL MAPPING METHOD

  • Fuyong Xu
  • Zhonglei Mei
Article
  • 37 Downloads

Abstract

The arbitrarily open trapezoidal-groove guide is analyzed with the conformal mapping technique. A new formula is given for the evaluation of one fundamental parameter associated with the technique. The relationship between the cut-off wavelength for the dominant mode and the geometry of the guide structure is studied; dispersion characteristic of the groove guide is also given. Some numerical results are shown to be in good agreement with both experimental data and the results of the finite element method (FEM). Moreover, it is testified that dispersion of the trapezoidal-groove guide is low. The obtained results are significant for the design and application of the open trapezoidal-groove guide for millimeter waves.

Key words

arbitrarily open trapezoidal-groove guide conformal mapping method dispersion and cut-off characteristics millimeter waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tischer E J. The groove guide, a low-loss waveguide for millimeter waves. IEEE Trans. MTT, 1963, 11(9): 291–296.CrossRefGoogle Scholar
  2. [2]
    Xu Fuyong et al. Network analyses for transmission characteristics of several kinds of curve-shaped groove waveguides. Int. J. Infrared Milli. 1996, 17(10): 1789–1798.CrossRefGoogle Scholar
  3. [3]
    Oliner A A. and Lampariello P. The dominant mode properties of open groove guide: an improved solution. IEEE Trans. MTT, 1985, 33(9): 755–763.CrossRefGoogle Scholar
  4. [4]
    Choi Y M et al. Theoretical and experimental characteristics of single V-groove guide for X-band and 100GHz operation. IEEE Trans MTT, 1989, 36(4): 715–724.CrossRefGoogle Scholar
  5. [5]
    Yang H S et al. Circular-groove guide for short millimeter and submillimeter waves. IEEE Tran. MTT, 1995, 43(2): 324–330.CrossRefGoogle Scholar
  6. [6]
    Lu Mai, Yang Zheng, Wei Fulin. On the main mode of trapezoidal-groove guide by finite element method. Int. J. Infrared Milli. 1998, 19(3): 529–541.CrossRefGoogle Scholar
  7. [7]
    Xu Fuyong, et al. Impedance characteristics of closed elliptic-groove waveguide for millimeter waves, Int. J. Infrared Milli. 2002, 23(11): 1649–1658.CrossRefGoogle Scholar
  8. [8]
    Xu Shanjia, Zhang Yaojiang. Network analysis of the dispersion characteristics for the groove guide with arbitrary shaped curves. Journal of China University of Science and Technology, 1994, 24(1): 13–17.Google Scholar
  9. [9]
    Lee Byung-Tak, Lee Jae W, Eom Hyo J, and Shin Sungyung. Fourier-transform analysis for rectangular groove guide, IEEE Trans. MTT, 1995, 43(9): 2162–2165.CrossRefGoogle Scholar
  10. [10]
    Xu Fuyong, et al. Analysis for transmission characteristics of closed trapezoidal-groove waveguide with boundary element method, Int. J. Infrared Milli. 1999, 20(9): 1691–1699.CrossRefGoogle Scholar
  11. [11]
    Hu Chi, Analyzing the semicircular groove guide with the conformal mapping technique, Int. J. Infrared Milli. 2003, 24(11): 1999–2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Fuyong Xu
    • 1
  • Zhonglei Mei
    • 1
  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouThe People’s Republic of China

Personalised recommendations