The Infrared Ray Transport in an N-Layered Matched Skin

  • Xichang Wang
  • Zhen hua
  • Yanjun Gong
Original Article


Infrared ray (IR) has great potential in medical diagnosis and therapy. In order to detect tumor in skin, we set up the steady-state and time domain IR diffusion model of an n-layered matched medium with an infinitely thick. We utilize the diffuse equation to solve a five-layered infinite matched medium and obtain the accurate solution of a matched medium of the steady state and time domain in tissue. We compare the steady-state spatially resolved reflectance calculated with Monte-Carlo simulations. The Monte-Carlo simulation shows that the solution is valid. Our equation can be used to obtain the tumor information in medical diagnosis and therapy.

Key words:

tissue optics infrared ray transport the steady-state time domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy”, Phys. Mod. Biol. 46, 2227–2237 (2001).CrossRefGoogle Scholar
  2. 2. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with 3D segmentation from magnetic resonance imaging”, Appl. Opt. 42, 3095–3108(2003).PubMedGoogle Scholar
  3. 3. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography,” Journal of the Optical Society of America A 19, 1983–1993 (2002).Google Scholar
  4. 4. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer”, Appl. Opt. 42, 2906–2914 (2003).PubMedGoogle Scholar
  5. 5. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14, 246–264(1997).Google Scholar
  6. 6. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for non-invasive determination of the Optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314(1996).Google Scholar
  7. 7. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to source,” Phys. Med. Biol. 42,1801–1819(1997)CrossRefPubMedGoogle Scholar
  8. 8. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, ‘“Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain,” Appl. Opt. 39, 2235–2244 (2000).Google Scholar
  9. 9. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).Google Scholar
  10. 10. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-Domain Optical Mammography: Initial Clinical Results on Detection and Characterization of Breast Tumors”, Appl. Opt. 42, 3170–3186 (2003).PubMedGoogle Scholar
  11. 11. A. Kienle, T. Glanzmann, G. Wagnieres, and H. van den Bergh, investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37 (28), 6852—6862(1998).Google Scholar
  12. 12. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37 (4), 779–791 (1998).Google Scholar
  13. 13. R. C. Haskell, L.O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdama, and B. J. Tromberg, “Boundary conditions for the diffuse equation in radiative transfer,” J. Opt. SOC. Am. A11 2727–2741(1994).Google Scholar
  14. 14. J.Ripoll and M. Nieto-Vesperinas, “Index mismatch for diffuse photon density waves at both flat and rough diffuse-difuse interfaces”, J. Opt. SOC. Am. A16 1947–1957(1999)Google Scholar
  15. 15. L. Wang, S. L. Jacques, and L. Zheng, “MCML Monte Carlo modeling of light transport in multi-layered tissue,” comput. Methods Programs Biomed. 47,131–146 (1995)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Xichang Wang
    • 1
  • Zhen hua
    • 1
  • Yanjun Gong
    • 1
    • 2
  1. 1.Physics DepartmentYantai UniversityYantai, Shandong provinceChina
  2. 2.School of ScienceXidian UniversityXi’an, Shaanxi provinceChina

Personalised recommendations