Advertisement

Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design

  • Robert Hu
  • Mark S. C. Yang
Article

Abstract

This paper analyzes different input-matching mechanisms used in designing the wide-band amplifiers in general, and the low noise amplifiers (LNA) in particular, and their corresponding noise impact. Among them, the most promising one is the reactive-feedback circuit configuration, which is a combination of high-frequency inductive feedback and low frequency capacitive feedback. In this paper the simulated result that both matched input impedance and low noise temperature T n can be achieved simultaneously over a wide bandwidth in the single-ended low noise amplifier is proved mathematically and is well interpreted. This understanding of reactive feedback is crucial for the future development of ultra-wide-band low-noise amplifiers.

Keywords:

Input matching wide-band LNA resistive feedback inductive feedback capacitive feedback reactive feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [1] C.C. Chin, et al, “A low-noise 100 GHz sideband separating receiver,” Intl. J. IR & MM Waves, vol. 24, pp. 569–600, April 2004.Google Scholar
  2. [2]
    [2] R. Rice, M. Sumner, J. Zmuidzinas, R. Hu, H.G. Leduc, A.I. Harris, D. Miller, “SIS mixer design for a broadband millimeter spectrometer suitable for rapid line surveys and redshift determinations,” Proc. SPIE, vol. 4855, pp. 301–311, Feb. 2003.Google Scholar
  3. [3]
    [3] J. Yang, S. Huang, M. Ohishi, K. Miyazawa, R. Henneberger, “A 492 GHz submillimeterwave receiver,” Intl. J. IR & MM Waves, vol. 22, pp. 217–223, Feb. 2001.Google Scholar
  4. [4]
    [4] I.L. Fernandiz, J.D. Gallego, C. Diez, A. Barcia, J.M. Pintado, “Wide-band ultra low noise cryogenic InP IF amplifiers for the Herschel mission radiometers,” Proc. SPIE, vol. 4855, pp. 489–500, Feb. 2003.Google Scholar
  5. [5]
    [5] N. Wadefalk, et al., “Cryogenic Wide-Band Ultra-Low-Noise IF Amplifiers Operating at Ultra-Low DC Power,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1705–1711, June 2003.Google Scholar
  6. [6]
    [6] S. Weinreb, D. L. Fenstermacher, R. W. Harris, “Ultra-low-noise 1.2- to 1.7-GHz cooled GaAsFET amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 82, pp. 849–853, June 1982.Google Scholar
  7. [7]
    [7] R. Hu, “An 8–20 GHz LNA design and the analysis of its input matching mechanism,” IEEE Microwave and Wireless Components Letter, vol. 14, pp. 528–530, Nov. 2004.Google Scholar
  8. [8]
    [8] T.K. Nguyen, C.H. Kim, G.J. Ihm, M.S. Yang, S.G. Lee, “CM OS low-noise amplifier design optimization techniques,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1433–1442, May 2004.Google Scholar
  9. [9]
    [9] D. Lu, D. Rutledge, M. Kovacevic, J. Hacker, “A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC,” Intl J. IR & M Waves, vol. 23, pp. 693–704, May 2002.Google Scholar
  10. [10]
    [10] G. Gonzalez, “Microwave transistor amplifier: analysis and design,” Prentice-Hall Inc. ISBN 0135816467, 1984.Google Scholar
  11. [11]
    [11] R. Hu, S. Weinreb, “A novel wide-band noise-parameter measurement method and its cryogenic application,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1498–1507, May 2004.Google Scholar
  12. [12]
    [12] R. A. Minasian, “Simplified GaAs MESFET model to 10 GHz,” Electronic letter, pp. 549–551, Sep. 1977.Google Scholar
  13. [13]
    [13] M. Berroth, R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891–895, July 1990.Google Scholar
  14. [14]
    [14] G. Dambrine, A. Cappy, F. Heliodore, E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151–1159, July 1988.Google Scholar
  15. [15]
    [15] A. Eskandarian, S. Weinreb, “A note on experimental determination of small-signal equivalent circuit of millimeter-wave FETs,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 159–162, Jan. 1993.Google Scholar
  16. [16]
    [16] M. W. Pospieszalski, “Modeling of noise parameters of MESFET’s and MODFET’s and their frequency and temperature dependence,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1340–1350, Sep. 1989.Google Scholar
  17. [17]
    [17] F. Danneville, H. Happy, G. Dambrine, J. M. Belquin, A. Cappy, “Microscopic noise modeling and macroscopic noise modeling: How good a connection,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 779–786, May 1994.Google Scholar
  18. [18]
    [18] J. H. Han, K. Lee, “A new extraction method for noise sources and correlation coefficient in MESFET,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 487–490, Mar. 1996.Google Scholar
  19. [19]
    [19] K. B. Niclas, W. T. Wilser, R. B. Gold, W. R. Hitchens, “The matched feedback amplifier: ultra-band microwave amplification with GaAs MESFET’s,” IEEE Trans. Microwave Theory Tech., vol. 28, pp. 285–294, April 1980.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Robert Hu
    • 1
  • Mark S. C. Yang
    • 2
  1. 1.Department of Electronics EngineeringNational Chiao Tung UniversityHsin-ChuTaiwan Republic of China
  2. 2.VIA TechnologiesTaipeiTaiwan Republic of China

Personalised recommendations