Advertisement

Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students’ Command Process through Instrumental Orchestrations

  • Luc TroucheEmail author
Article

Abstract

After an introduction which addresses some basic questions, this article is organized around three points: (1) The theoretical framework of the so-called “instrumental approach” which has been a theme in the last two CAME symposia; (2) A consideration of two processes (instrumentalization and instrumentation) which interact in the instrumental genesis; and (3) The introduction of the idea of instrumental orchestration as a way of allowing the teacher to assist the student’s instrumental genesis.

Keywords

artifact mathematical instrument instrumentation instrumentalization instrumental orchestration 

References

  1. Allen, R., Wallace, M. and Cederberg, J. (1995). Preparing Teachers to Use Geometric Software. Proceedings of the Seventh International Congress on Mathematics Education.Google Scholar
  2. Artigue, M. 2002Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual workInternational Journal of Computers for Mathematical Learning7245274CrossRefGoogle Scholar
  3. Balacheff, N. 1994Didactique et intelligence artificielleRecherches en Didactique des Mathématiques14942Google Scholar
  4. Billeter, J.-F. (2002). Leçons sur Tchouang-Tseu, Editions Allia.Google Scholar
  5. Bosch, M., Chevallard, Y. 1999La sensibilité de l’activité mathématique aux ostensifsObjet d’étude et problématique. Recherches en Didactique des Mathématiques1977124Google Scholar
  6. Bourdieu, P. (2003). Images d’Algérie, une affinité élective. Actes Sud.Google Scholar
  7. Changeux, J.-P. (2002). L’homme de vérité. Editions Odile Jacob.Google Scholar
  8. Chevallard, Y. (1992). Intégration et viabilité des objets informatiques, le problème de l’ingénierie didactique. in (Cornu ed.), L’ordinateur pour enseigner les mathématiques, PUF.Google Scholar
  9. Debray, R. (2001). Dieu, un itinéraire. Editions Odile Jacob.Google Scholar
  10. Dehaene, S. (1997). La bosse des maths. Editions Odile Jacob.Google Scholar
  11. Guin, D., Trouche, L. 1999The Complex Process of Converting Tools into Mathematical Instruments. The Case of CalculatorsInternational Journal of Computers for Mathematical Learning3195227CrossRefGoogle Scholar
  12. Guin, D. and Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: necessity of instrumental orchestrations. In, E. Schneider (Ed.), Zentralblatt für Didaktik der Mathematik, Vol. 34(5), pp. 204–211.Google Scholar
  13. Guin, D., Ruthven, K. and Trouche, L. (Eds.) (2004). The Didactical Challenge of Symbolic Calculators: Turning a Computational Device into a Mathematical Instrument, Kluwer Academic Publishers, 400p.Google Scholar
  14. Healy, L. (2002). Iterative design and Comparison of Learning Systems for Reflection in Two Dimensions, Unpublished PhD thesis, University of London.Google Scholar
  15. Hoyles, C. 2001Steering between Skills and Creativity: a Role for the Computer?For the Learning of Mathematics 21Vol. 13339Google Scholar
  16. Hoyles, C., Noss, R. 1987Children working in a structured Logo environment: from doing to understandingRecherches en Didactique des Mathématiques8131174Google Scholar
  17. Houdé, O., Kayser, D., Koenig, O., Proust, J. and Rastier, F. (Eds.) (1998). Vocabulaire de sciences cognitives, PUF.Google Scholar
  18. Houdé, O., Mazoyer, B. and Tzourio-Mazoyer, N. (Eds.) (2002). Cerveau et psychologie, PUF.Google Scholar
  19. Joab, M., Guin, D. and Trouche, L. (2003). Conception et réalisation de ressources pédagogiques vivantes, des ressources intégrant les TICE en mathématiques. In C. Desmoulins, P. Marquet and D. Bouhineau (Eds.), Actes de la conférence EIAH 2003, ATIEF et INRP, pp. 259–270.Google Scholar
  20. Lagrange, J.-B. and Py, D. (2002). Développer un environnement d’apprentissage utilisant le calcul formel. Hypothèses, méthode, première réalization. In, J.-F. Nicaud, E. Delozanne and B. Grugeon (Eds.), Logiciels pour l’apprentissage de l’algèbre, Sciences et Techniques Educatives, Vol. 9(1–2), pp. 91–120.Google Scholar
  21. Lagrange, J.-B., Artigue, M., Laborde, C. and Trouche, L. (2003). Technology and mathematics education: a multidimensional study of the evolution of research and innovation, In, A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick and F.K.S. Leung (Eds.), Second International Handbook of Mathematics Education, Kluwer Academic Publishers, pp. 239–271.Google Scholar
  22. Lavoie, P. 1994Contribution à une histoire des mathématiques scolaires au Québec: l’arithmétique dans les écoles primaires (1800–1920), Thèse de doctoratFaculté des sciences de l’éducation, Université de LavalQuébecGoogle Scholar
  23. Noss, R. and Hoyles, C. (Eds.) (1996). Windows on Mathematical Meanings - Learning Cultures and Computers, Kluwer Academic Publishers.Google Scholar
  24. Piaget, J. (1936). La naissance de l’intelligence chez l’enfant. Delachaux et Niestlé.Google Scholar
  25. Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains, Armand Colin.Google Scholar
  26. Rabardel P. (2000). Elements pour une approche instrumentale en didactique des mathématiques, in M. Bailleul (Ed.), Actes de l’Ecole d’été de didactique des mathématiques, IUFM de Caen, pp. 203–213.Google Scholar
  27. Rabardel, P. and Samurcay, R. (2001). From artifact to instrumented-mediated learning, New challenges to research on learning. International Symposium organized by the Center for Activity Theory and Developmental Work Research, University of Helsinki, March 21–23.Google Scholar
  28. Ruthven, K. 2002Instrumenting mathematical activity: reflections on key studies of the educational use of computer algebra systemsInternational Journal of Computers for Mathematical Learning7275291CrossRefGoogle Scholar
  29. Trouche, L. (1998). Faire des mathématiques avec des calculatrices symboliques, 38 variations sur un thème imposé, IREM, Université Montpellier, II.Google Scholar
  30. Trouche, L. (2003). From Artifact to Instrument: Mathematics Teaching Mediated by Symbolic Calculators. In P. Rabardel and Y. Waern (Eds.), special issue of Interacting with Computers, Vol. 15(6) (in press).Google Scholar
  31. Vergnaud, G. (1996). Au fond de l’apprentissage, la conceptualisation, Actes de l’école d’été de didactique des mathématiques, IREM, Clermont-Ferrand, 174–185.Google Scholar
  32. Vergnaud, G. 1990La théorie des champs conceptuelsRecherches en Didactique des Mathématiques10133170Google Scholar
  33. Verillon, P., Rabardel, P. 1995Cognition and artifact: A contribution to the study of thought in relation to instrument activityEuropean Journal of Psychology in Education977101CrossRefGoogle Scholar
  34. Vygotski, L.S. (1934). Pensée et langage, Flammarion (1978).Google Scholar
  35. Wallon, H. (1949). Rôle d’autrui et conscience de soi, Enfance (n. special), 279–286.Google Scholar
  36. Wartofsky, M. (1983). From genetic epistemology to historical epistemology: Kant, Marx and Piaget. in Liben, L.S. (Ed.), Piaget and the Foundations of Knowledges, Hillsdale, N.J., Lawrence Erlbaum.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of MathematicsLIRDEF, IREM & LIRMM Université Montpellier IIMontpellier CedexFrance

Personalised recommendations