Skip to main content

Advertisement

Log in

Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

There is no specific drug to treat severe acute pancreatitis (SAP), which induces substantial medical and social burden. Many studies have reported the beneficial effects of emodin against SAP in vivo and in vitro. However, the underlying mechanism has been unclear. This paper described the design and implementation of anti-inflammatory and antioxidant activity of emodin. Emodin restored the pathological damage of SAP and simultaneously decreased the high levels of serum amylase, lipase, TNF-α, and IL-18 in the peripheral blood of SAP rat. Emodin reversed reactive oxygen species (ROS) in neutrophils derived from SAP rat. The levels of voltage-dependent anion channel 1 (VDAC1), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-18 were examined to analyze the change of inflammasome-related mediators between SAP and emodin treatment. These findings suggest that emodin plays its protective role on SAP against oxidative stress and inflammasome signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Trikudanathan, G., D.R.J. Wolbrink, H.C. van Santvoort, et al. 2019. Current concepts in severe acute and necrotizing pancreatitis: An evidence-based approach. Gastroenterology 156 (1994–2007): e3.

    Google Scholar 

  2. Kim, T.Y., S.J. Kim, Y.S. Kim, J.W. Lee, E.J. Park, S.J. Lee, K.J. Lee, and Y.S. Cha. 2019. Delta neutrophil index as an early predictive marker of severe acute pancreatitis in the emergency department. United European Gastroenterology Journal 7: 488–495.

    PubMed  PubMed Central  Google Scholar 

  3. Yang, Z.W., X.X. Meng, and P. Xu. 2015. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. Journal of Cellular and Molecular Medicine 19: 2513–2520.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. El-Kenawi, A., and B. Ruffell. 2017. Inflammation, ROS, and mutagenesis. Cancer Cell 32: 727–729.

    CAS  PubMed  Google Scholar 

  5. Aviello, G., and U.G. Knaus. 2017. ROS in gastrointestinal inflammation: Rescue or sabotage? British Journal of Pharmacology 174: 1704–1718.

    CAS  PubMed  Google Scholar 

  6. Chen, Y.K., Y.K. Xu, H. Zhang, J.T. Yin, X. Fan, D.D. Liu, H.Y. Fu, and B. Wan. 2016. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response. Biomedicine & Pharmacotherapy 84: 1001–1007.

    CAS  Google Scholar 

  7. Zhu, T., W. Zhang, S.J. Feng, and H.P. Yu. 2016. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARgamma-dependent pathway. International Immunopharmacology 34: 16–24.

    CAS  PubMed  Google Scholar 

  8. Wang, T., X.G. Zhong, Y.H. Li, X. Jia, S.J. Zhang, Y.S. Gao, M. Liu, and R.H. Wu. 2015. Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model. Chinese Journal of Integrative Medicine 21: 431–437.

    CAS  PubMed  Google Scholar 

  9. Wang, G.J., Y. Wang, Y.S. Teng, et al. 2016. Protective effects of emodin-induced neutrophil apoptosis via the Ca2+-caspase 12 pathway against SIRS in rats with severe acute pancreatitis. BioMed Research International 2016: 1736024.

    PubMed  PubMed Central  Google Scholar 

  10. Ma, C., B. Wen, Q. Zhang, P.P. Shao, W. Gu, K. Qu, Y. Shi, and B. Wang. 2019. Emodin induces apoptosis and autophagy of fibroblasts obtained from patient with ankylosing spondylitis. Drug Design, Development and Therapy 13: 601–609.

    PubMed  PubMed Central  Google Scholar 

  11. Zhao, J.Y., J.Q. Wang, L. Wu, F. Zhang, Z.P. Chen, W.D. Li, H. Cai, and X. Liu. 2019. Emodin attenuates cell injury and inflammation in pancreatic acinar AR42J cells. Journal of Asian Natural Products Research 21: 186–195.

    CAS  PubMed  Google Scholar 

  12. J MB. 2018. Special issue on ‘ROS and mitochondria in nervous system function and disease’. FEBS Letters 592: 661–662.

    Google Scholar 

  13. Colombini, M. 2004. VDAC: The channel at the interface between mitochondria and the cytosol. Molecular and Cellular Biochemistry 256-257: 107–115.

    PubMed  Google Scholar 

  14. Galganska, H., M. Budzinska, M. Wojtkowska, and H. Kmita. 2008. Redox regulation of protein expression in Saccharomyces cerevisiae mitochondria: Possible role of VDAC. Archives of Biochemistry and Biophysics 479: 39–45.

    CAS  PubMed  Google Scholar 

  15. Li, F., M. Xu, M. Wang, L. Wang, H. Wang, H. Zhang, Y. Chen, J. Gong, J(.J). Zhang, I.M. Adcock, K.F. Chung, and X. Zhou. 2018. Roles of mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced lung inflammation and emphysema. Respiratory Research 19: 230.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, X., L. Zhang, X. Ye, Q. Hao, T. Zhang, G. Cui, and M. Yu. 2018. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflammation Research 67: 57–65.

    CAS  PubMed  Google Scholar 

  17. Mullard, A. 2019. NLRP3 inhibitors stoke anti-inflammatory ambitions. Nature Reviews. Drug Discovery 18: 405–407.

    CAS  PubMed  Google Scholar 

  18. Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19: 477–489.

    CAS  PubMed  Google Scholar 

  19. Zhao, X., C. Zhang, M. Hua, et al. 2017. NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma. Oncotarget 8: 108571–108583.

    PubMed  PubMed Central  Google Scholar 

  20. Paran, H., A. Mayo, D. Kidron, et al. 2000. Experimental acute necrotising pancreatitis: Evaluation and characterisation of a model of intraparenchymal injection of sodium taurocholate in rats. The European Journal of Surgery 166: 894–898.

    CAS  PubMed  Google Scholar 

  21. Working Group IAPAPAAPG. 2013. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 13: e1–e15.

    Google Scholar 

  22. van Dijk, S.M., N.D.L. Hallensleben, H.C. van Santvoort, P. Fockens, H. van Goor, M.J. Bruno, and M.G. Besselink. 2017. Acute pancreatitis: Recent advances through randomised trials. Gut 66: 2024–2032.

    Google Scholar 

  23. Shi, Q., K.S. Liao, K.L. Zhao, et al. 2015. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-kappaB pathway. Mediators of Inflammation 2015: 685043.

    PubMed  PubMed Central  Google Scholar 

  24. Tian, S.L., Y. Yang, X.L. Liu, and Q.B. Xu. 2018. Emodin attenuates bleomycin-induced pulmonary fibrosis via anti-inflammatory and anti-oxidative activities in rats. Medical Science Monitor 24: 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, J., F. Wu, and C. Chen. 2015. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 25: 5142–5146.

    CAS  Google Scholar 

  26. Xue, J., F. Chen, J. Wang, S. Wu, M. Zheng, H. Zhu, Y. Liu, J. He, and Z. Chen. 2015. Emodin protects against concanavalin A-induced hepatitis in mice through inhibiting activation of the p38 MAPK-NF-kappaB signaling pathway. Cellular Physiology and Biochemistry 35: 1557–1570.

    CAS  PubMed  Google Scholar 

  27. Sun, J., J.W. Luo, W.J. Yao, et al. 2019. Effect of emodin on gut microbiota of rats with acute kidney failure. Zhongguo Zhong Yao Za Zhi 44: 758–764.

    PubMed  Google Scholar 

  28. Shimizu, K., M. Kageyama, H. Ogura, T. Yamada, and T. Shimazu. 2018. Effects of rhubarb on intestinal dysmotility in critically ill patients. Internal Medicine 57: 507–510.

    PubMed  Google Scholar 

  29. Xiang, H., X. Tao, S. Xia, J. Qu, H. Song, J. Liu, and D. Shang. 2017. Emodin alleviates sodium taurocholate-induced pancreatic acinar cell injury via microRNA-30a-5p-mediated inhibition of high-temperature requirement A/transforming growth factor beta 1 inflammatory signaling. Frontiers in Immunology 8: 1488.

    PubMed  PubMed Central  Google Scholar 

  30. Yang, Y.Z., Y. Xiang, M. Chen, L.N. Xian, and X.Y. Deng. 2016. Clinical significance of dynamic detection for serum levels of MCP-1, TNF-alpha and IL-8 in patients with acute pancreatitis. Asian Pacific Journal of Tropical Medicine 9: 1111–1114.

    CAS  PubMed  Google Scholar 

  31. Vareechon, C., S.E. Zmina, M. Karmakar, et al. 2017. Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell Host & Microbe 21 (611–618): e5.

    Google Scholar 

  32. Yang, W., Y. Tao, Y. Wu, X. Zhao, W. Ye, D. Zhao, L. Fu, C. Tian, J. Yang, F. He, and L. Tang. 2019. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nature Communications 10: 1076.

    PubMed  PubMed Central  Google Scholar 

  33. Goyal, S., S.K. Amar, A.K. Srivastav, D. Chopra, M.K. Pal, N. Arjaria, and R.S. Ray. 2019. Corrigendum to “ROS mediated crosstalk between endoplasmic reticulum and mitochondria by Phloxine B under environmental UV irradiation”. Journal of Photochemistry & Photobiology, B: Biology 161 (2016) 284–294. Journal of Photochemistry and Photobiology. B 190: 179–180.

    CAS  Google Scholar 

  34. Zhang, X., L. Yu, and H. Xu. 2016. Lysosome calcium in ROS regulation of autophagy. Autophagy 12: 1954–1955.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P.L. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22: 1111–1129.

    CAS  Google Scholar 

  36. Lawana, V., N. Singh, S. Sarkar, A. Charli, H. Jin, V. Anantharam, A.G. Kanthasamy, and A. Kanthasamy. 2017. Involvement of c-Abl kinase in microglial activation of NLRP3 inflammasome and impairment in autolysosomal system. Journal of Neuroimmune Pharmacology 12: 624–660.

    PubMed  PubMed Central  Google Scholar 

  37. Goncalves, A.C., L.S. Ferreira, F.A. Manente, et al. 2017. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection. Immunology 151: 154–166.

    PubMed  PubMed Central  Google Scholar 

  38. Savage, C.D., G. Lopez-Castejon, A. Denes, et al. 2012. NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Frontiers in Immunology 3: 288.

    PubMed  PubMed Central  Google Scholar 

  39. Tang, Y.S., Y.H. Zhao, Y. Zhong, X.Z. Li, J.X. Pu, Y.C. Luo, and Q.L. Zhou. 2019. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/caspase-1 signaling pathway. Inflammation Research 68: 727–738.

    CAS  PubMed  Google Scholar 

  40. Hong, Y., Y. Liu, D. Yu, M. Wang, and Y. Hou. 2019. The neuroprotection of progesterone against Abeta-induced NLRP3-caspase-1 inflammasome activation via enhancing autophagy in astrocytes. International Immunopharmacology 74: 105669.

    CAS  PubMed  Google Scholar 

  41. Zorman, J., P. Susjan, and I. Hafner-Bratkovic. 2016. Shikonin suppresses NLRP3 and AIM2 inflammasomes by direct inhibition of caspase-1. PLoS One 11: e0159826.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Xue Sui for the help in the flow cytometry assay and Xiaoxin Sun for the arrangement of the daily work in the laboratory.

Funding

This research was supported by the National Natural Science Foundation of China (No. 81873156 and No. 81703871), Key Project Supported by Clinical Ability Construction of Liaoning Province (No. LNCCC-A03-2015), and Doctoral Start-up Foundation of Liaoning Province (No. 20170520408).

Author information

Authors and Affiliations

Authors

Contributions

Shilin Xia and Dong Shang participated in the design of this study. Shilin Xia performed the manuscript review. Yujia Ni exerted the main experiment and performed the statistical analysis. Shilin Xia and Han Liu drafted the manuscript. Qi Zhou, Hong Xiang, and Hua Sui provided assistance for the data acquisition and data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong Shang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, S., Ni, Y., Zhou, Q. et al. Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity. Inflammation 42, 2129–2138 (2019). https://doi.org/10.1007/s10753-019-01077-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01077-z

KEY WORDS

Navigation