Skip to main content
Log in

Neutrophil Cytosolic Factor 1 Contributes to the Development of Sepsis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To identify differentially expressed genes in sepsis and potential key role of reactive oxygen species (ROS) genes associated with sepsis. Gene expression dataset was available from GSE46599. Firstly, we screened the differentially expressed genes between sepsis and healthy samples. Then, the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tools were utilized to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses at the functional level. Differentially expressed genes mediating ROS levels were validated in the next investigation and analysis. We identified 1094 genes expressed differentially between normal and sepsis samples, including 655 upregulated genes and 439 downregulated genes. At the functional level, GO and KEGG pathway enrichment analysis showed that those differentially expressed genes were majorly associated with the immune response and metabolic process in sepsis. Further analysis revealed that neutrophil cytosolic factor 1(NCF1), a critical gene in the ROS system, upregulated in THP-1 cell and monocytes under lipopolysaccharides stimulation. Moreover, we identified the upregulation of NCF1 in a sepsis model. We screened the differentially expressed genes from the global level and identified NCF1 might be a critical target gene in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

NCF1:

neutrophil cytosolic factor 1

FC:

fold change

FDR:

false discovery rate

BP:

biological processes

MF:

molecular function

CF :

component function

NADPH:

nicotinamide adenine dinucleotide phosphate

SIRS:

systemic inflammatory response syndrome

DAVID:

the Database for Annotation, Visualization and Integrated Discovery

GO:

gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes pathway

ICUs:

intensive care units

GEO:

Gene Expression Omnibus

PPI:

protein-protein interaction

LPS:

lipopolysaccharides

DEGs:

differentially expressed genes

CLP:

cecal ligation and puncture

References

  1. Amatullah, H., Y. Shan, B.L. Beauchamp, P.L. Gali, S. Gupta, T. Maron-Gutierrez, E.R. Speck, A.E. Fox-Robichaud, J.L. Tsang, S.H. Mei, T.W. Mak, P.R. Rocco, J.W. Semple, H. Zhang, P. Hu, J.C. Marshall, D.J. Stewart, M.E. Harper, P.C. Liaw, W.C. Liles, C.C. Dos Santos, and Canadian Critical Care Translational Biology Group. 2017. DJ-1/PARK7 impairs bacterial clearance in sepsis. American Journal of Respiratory and Critical Care Medicine 195 (7): 889–905. https://doi.org/10.1164/rccm.201604-0730OC.

    Article  CAS  PubMed  Google Scholar 

  2. Bime, C., T. Zhou, T. Wang, M.J. Slepian, J.G. Garcia, and L. Hecker. 2016. Reactive oxygen species-associated molecular signature predicts survival in patients with sepsis. Pulmonary Circulation 6 (2): 196–201. https://doi.org/10.1086/685547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burg, A.R., S. Das, L.E. Padgett, Z.E. Koenig, and H.M. Tse. 2018. Superoxide production by NADPH oxidase intensifies macrophage antiviral responses during Diabetogenic Coxsackievirus infection. Journal of Immunology 200 (1): 61–70. https://doi.org/10.4049/jimmunol.1700478.

    Article  CAS  Google Scholar 

  4. Cohen, J., J.L. Vincent, N.K. Adhikari, F.R. Machado, D.C. Angus, T. Calandra, K. Jaton, et al. 2015. Sepsis: a roadmap for future research. The Lancet Infectious Diseases 15 (5): 581–614. https://doi.org/10.1016/S1473-3099(15)70112-X.

    Article  PubMed  Google Scholar 

  5. Galley, H.F. 2011. Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia 107 (1): 57–64. https://doi.org/10.1093/bja/aer093.

    Article  CAS  PubMed  Google Scholar 

  6. Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. BMJ 353: i1585. https://doi.org/10.1136/bmj.i1585.

    Article  PubMed  Google Scholar 

  7. Greve, B., P. Hoffmann, R. Vonthein, J. Kun, B. Lell, M.P. Mycko, K.W. Selmaj, K. Berger, R. Weissert, and P.G. Kremsner. 2008. NCF1 gene and pseudogene pattern: association with parasitic infection and autoimmunity. Malaria Journal 7: 251. https://doi.org/10.1186/1475-2875-7-251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmdahl, R., O. Sareila, L.M. Olsson, L. Backdahl, and K. Wing. 2016. Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunological Reviews 269 (1): 228–247. https://doi.org/10.1111/imr.12378.

    Article  CAS  PubMed  Google Scholar 

  9. Hultqvist, M., P. Olofsson, J. Holmberg, B.T. Backstrom, J. Tordsson, and R. Holmdahl. 2004. Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proceedings of the National Academy of Sciences of the United States of America 101 (34): 12646–12651. https://doi.org/10.1073/pnas.0403831101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levy, M.M., M.P. Fink, J.C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S.M. Opal, J.L. Vincent, G. Ramsay, and SCCM/ESICM/ACCP/ATS/SIS. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine 31 (4): 1250–1256. https://doi.org/10.1097/01.CCM.0000050454.01978.3B.

    Article  PubMed  Google Scholar 

  11. Macdonald, J., H.F. Galley, and N.R. Webster. 2003. Oxidative stress and gene expression in sepsis. British Journal of Anaesthesia 90 (2): 221–232.

    Article  CAS  Google Scholar 

  12. McCreath, G., M.M. Scullion, D.A. Lowes, N.R. Webster, and H.F. Galley. 2016. Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis. British Journal of Anaesthesia 116 (1): 131–139. https://doi.org/10.1093/bja/aev400.

    Article  CAS  PubMed  Google Scholar 

  13. Pizzolla, A., M. Hultqvist, B. Nilson, M.J. Grimm, T. Eneljung, I.M. Jonsson, M. Verdrengh, T. Kelkka, I. Gjertsson, B.H. Segal, and R. Holmdahl. 2012. Reactive oxygen species produced by the NADPH oxidase 2 complex in monocytes protect mice from bacterial infections. Journal of Immunology 188 (10): 5003–5011. https://doi.org/10.4049/jimmunol.1103430.

    Article  CAS  Google Scholar 

  14. Shalova, I.N., J.Y. Lim, M. Chittezhath, A.S. Zinkernagel, F. Beasley, E. Hernandez-Jimenez, V. Toledano, et al. 2015. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha. Immunity 42 (3): 484–498. https://doi.org/10.1016/j.immuni.2015.02.001.

    Article  CAS  PubMed  Google Scholar 

  15. van Vught, L.A., P.M. Klein Klouwenberg, C. Spitoni, B.P. Scicluna, M.A. Wiewel, J. Horn, M.J. Schultz, et al. 2016. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for Sepsis. JAMA 315 (14): 1469–1479. https://doi.org/10.1001/jama.2016.2691.

    Article  PubMed  Google Scholar 

  16. Weber, G.F., B.G. Chousterman, S. He, A.M. Fenn, M. Nairz, A. Anzai, T. Brenner, F. Uhle, Y. Iwamoto, C.S. Robbins, L. Noiret, S.L. Maier, T. Zonnchen, N.N. Rahbari, S. Scholch, A. Klotzsche-von Ameln, T. Chavakis, J. Weitz, S. Hofer, M.A. Weigand, M. Nahrendorf, R. Weissleder, and F.K. Swirski. 2015. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347 (6227): 1260–1265. https://doi.org/10.1126/science.aaa4268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Z., X. Wang, R. Li, Z. Ju, C. Qi, Y. Zhang, F. Guo, G. Luo, Q. Li, C. Wang, J. Zhong, J. Huang, and Y. Xu. 2015. Genetic mutations potentially cause two novel NCF1 splice variants up-regulated in the mammary gland, blood and neutrophil of cows infected by Escherichia coli. Microbiological Research 174: 24–32. https://doi.org/10.1016/j.micres.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Jun Zhang for the critical review and elaborate revision of this manuscript and Drs Guoming Deng and Ebun Omoyinmi for the helpful discussion with this report. In addition, they thank the subjects who agreed to participate in this genetic study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Meng.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic Supplementary Material

Table S1

137 ROS genes identified in previous study. (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Df., Cui, Xz., Cao, Wm. et al. Neutrophil Cytosolic Factor 1 Contributes to the Development of Sepsis. Inflammation 42, 811–817 (2019). https://doi.org/10.1007/s10753-018-0935-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0935-z

KEY WORDS

Navigation