Skip to main content
Log in

Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is a systemic inflammatory response syndrome caused by infection. The core mechanism underlying sepsis is immune dysfunction, with macrophages, as important cells of the innate immune system, playing an essential role. Autophagy has been shown to be closely related to inflammation and immunity, and autophagy enhancement in sepsis can play a protective role by negatively regulating abnormal macrophage activation, modulating macrophage polarization phenotype, reducing activation of the inflammasome and release of inflammatory factors, and affecting macrophage apoptosis. However, excessive autophagy may also lead to autophagic death of macrophages, which further aggravates the inflammatory response. The mechanisms underlying these functions are relatively complex and remain unclear, but may be related to a variety of signaling pathways such as NF-κB, mTOR, and PI3K/AKT. The administration of drugs to assist in the regulation of macrophage autophagy has become a novel treatment for sepsis. The present review focuses on the role and the potential mechanisms of macrophage autophagy in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274 (1): 330–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kovach, M.A., and T.J. Standiford. 2012. The function of neutrophils in sepsis. Current Opinion in Infectious Diseases 25 (3): 321–327.

    Article  CAS  PubMed  Google Scholar 

  4. Pastille, E., et al. 2010. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. Journal of Immunology 186 (2): 977–986.

    Article  CAS  Google Scholar 

  5. Rimmele, T., et al. 2016. Immune cell phenotype and function in sepsis. Shock 45 (3): 282–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luan, Y.-Y., N. Dong, M. Xie, X.Z. Xiao, and Y.M. Yao. 2014. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon & Cytokine Research 34 (1): 2–15.

    Article  CAS  Google Scholar 

  7. Giamarellos-Bourboulis, E.J. 2014. Natural killer cells in sepsis: Detrimental role for final outcome. Critical Care Medicine 42 (6): 1579–1580.

    Article  PubMed  Google Scholar 

  8. Epelman, S., K.J. Lavine, and G.J. Randolph. 2014. Origin and functions of tissue macrophages. Immunity 41 (1): 21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon, S., and A. Pluddemann. 2017. Tissue macrophages: heterogeneity and functions. BMC Biology 15 (1): 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lauvau, G., P.’. Loke, and T.M. Hohl. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology 27 (6): 397–409.

    Article  CAS  PubMed  Google Scholar 

  11. Hamidzadeh, K., S.M. Christensen, E. Dalby, P. Chandrasekaran, and D.M. Mosser. 2017. Macrophages and the recovery from acute and chronic inflammation. Annual Review of Physiology 79: 567–592.

    Article  CAS  PubMed  Google Scholar 

  12. Winkler, M.S., A. Rissiek, M. Priefler, E. Schwedhelm, L. Robbe, A. Bauer, C. Zahrte, C. Zoellner, S. Kluge, and A. Nierhaus. 2017. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS One 12 (8): e0182427.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, T.S., and J.C. Deng. 2008. Molecular and cellular aspects of sepsis-induced immunosuppression. Journal of Molecular Medicine 86 (5): 495–506.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, C.R., and D.C. Zeldin. 2015. Resolvin infectious inflammation by targeting the host response. The New England Journal of Medicine 373: 2183–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, V. 2018. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.

    Article  CAS  PubMed  Google Scholar 

  16. Levine, B., N. Mizushima, and H.W. Virgin. 2011. Autophagy in immunity and inflammation. Nature 469 (7330): 323–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138 (1): 28–36.

    Article  CAS  PubMed  Google Scholar 

  18. Deretic, V., T. Saitoh, and S. Akira. 2013. Autophagy in infection, inflammation and immunity. Nature Reviews Immunology 13 (10): 722–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deretic, V., T. Kimura, G. Timmins, P. Moseley, S. Chauhan, and M. Mandell. 2015. Immunologic manifestations of autophagy. The Journal of Clinical Investigation 125 (1): 75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bonilla, D.L., A. Bhattacharya, Y. Sha, Y. Xu, Q. Xiang, A. Kan, C. Jagannath, M. Komatsu, and N.T. Eissa. 2013. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (3): 537–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S.I. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12 (3): 213–223.

    Article  CAS  PubMed  Google Scholar 

  22. Cadwell, K., J.Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C. Kishi, W. Kc, J.A. Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T.S. Stappenbeck, and H.W. Virgin IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (7219): 259–263.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moscat, J., and M.T. Diaz-Meco. 2009. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137 (6): 1001–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuk, J.M., and E.K. Jo. 2013. Crosstalk between autophagy and inflammasomes. Molecules and Cells 36 (5): 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (7219): 264–268.

    Article  CAS  PubMed  Google Scholar 

  26. Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin, and B. Levine. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.

    Article  CAS  PubMed  Google Scholar 

  27. Chargui, A., and M.V. El May. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122 (11): 1047–1058.

    CAS  PubMed  Google Scholar 

  28. Schultze, J.L., and S.V. Schmidt. 2015. Molecular features of macrophage activation. Seminars in Immunology 27 (6): 416–423.

    Article  CAS  PubMed  Google Scholar 

  29. Hotchkiss, R.S., C.M. Coopersmith, J.E. McDunn, and T.A. Ferguson. 2009. The sepsis seesaw: tilting toward immunosuppression. Nature Medicine 15 (5): 496–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230.

    Article  CAS  PubMed  Google Scholar 

  31. Lin, C.W., S. Lo, C. Hsu, C.H. Hsieh, Y.F. Chang, B.S. Hou, Y.H. Kao, C.C. Lin, M.L. Yu, S.S. Yuan, and Y.C. Hsieh. 2014. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 9 (7): e102066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mansilla Pareja, M.E., and M.I. Colombo. 2013. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in Cellular and Infection Microbiology 3:54.

  33. Maurer, K., T. Reyes-Robles, F. Alonzo III, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17 (4): 429–440.

    Article  CAS  Google Scholar 

  34. Ryter, S.W., et al. 2014. The impact of autophagy on cell death modalities. International Journal of Cell Biology 2014: 502676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.

    Article  CAS  PubMed  Google Scholar 

  36. Aguirre, A., I. López-Alonso, A. González-López, L. Amado-Rodríguez, E. Batalla-Solís, A. Astudillo, J. Blázquez-Prieto, A.F. Fernández, J.A. Galván, C.C. dos Santos, and G.M. Albaiceta. 2014. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. Journal of Molecular Medicine (Berlin, Germany) 92 (6): 665–676.

    Article  CAS  Google Scholar 

  37. Lin, C.W., S. Lo, D.S. Perng, D.B.C. Wu, P.H. Lee, Y.F. Chang, P.L. Kuo, M.L. Yu, S.S.F. Yuan, and Y.C. Hsieh. 2014. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41 (3): 241–249.

    Article  PubMed  Google Scholar 

  38. Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253 (6): 1190–1200.

    Article  PubMed  Google Scholar 

  39. Unuma, K., T. Aki, T. Funakoshi, K. Hashimoto, and K. Uemura. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 11 (9): 1520–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Virgin, H.W., and B. Levine. 2009. Autophagy genes in immunity. Nature Immunology 10 (5): 461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waltz, P., E.H. Carchman, A.C. Young, J. Rao, M.R. Rosengart, D. Kaczorowski, and B.S. Zuckerbraun. 2011. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7 (3): 315–320.

    Article  CAS  PubMed  Google Scholar 

  42. Carchman, E.H., J. Rao, P.A. Loughran, M.R. Rosengart, and B.S. Zuckerbraun. 2011. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53 (6): 2053–2062.

    Article  CAS  PubMed  Google Scholar 

  43. Tang, Z., L. Ni, S. Javidiparsijani, F. Hu, L. A Gatto, R. Cooney, and G. Wang. 2013. Enhanced liver autophagic activity improves survival of septic mice lacking surfactant proteins A and D. The Tohoku Journal of Experimental Medicine 231 (2): 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mei, S., M. Livingston, J. Hao, L. li, C. Mei, and Z. Dong. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports 6: 22171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Howell, G.M., H. Gomez, R.D. Collage, P. Loughran, X. Zhang, D.A. Escobar, T.R. Billiar, B.S. Zuckerbraun, and M.R. Rosengart. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 8 (7): e69520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaushal, G.P., and S.V. Shah. 2016. Autophagy in acute kidney injury. Kidney International 89 (4): 779–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Su, Y., Y. Qu, F.Y. Zhao, H.F. Li, D.Z. Mu, and X.H. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12 (1): 116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Colell, A., J.E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129 (5): 983–997.

    Article  CAS  PubMed  Google Scholar 

  49. Takaoka, Y., et al. 2014. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Scientific Reports 4: 5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lo, S., S.S.F. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257 (2): 352–363.

    Article  PubMed  Google Scholar 

  51. Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, S.J., S.W. Ryter, J.F. Xu, K. Nakahira, H.P. Kim, A.M.K. Choi, and Y.S. Kim. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. American Journal of Respiratory Cell and Molecular Biology 45 (4): 867–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Green, Douglas R., and B. Levine. 2014. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157 (1): 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4 (2): 244–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lorne, E., et al. 2009. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 41 (2): 237–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gong, L., R.J. Devenish, and M. Prescott. 2012. Autophagy as a macrophage response to bacterial infection. IUBMB Life 64 (9): 740–747.

    Article  CAS  PubMed  Google Scholar 

  57. Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27 (1): 135–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, Y., et al. 2014. Signaling pathway of autophagy associated with innate immunity. Autophagy 4 (1): 110–112.

    Article  Google Scholar 

  59. Fujita, K.-I., and S.M. Srinivasula. 2014. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7 (5): 552–554.

    Article  Google Scholar 

  60. Harris, J., M. Hartman, C. Roche, S.G. Zeng, A. O'Shea, F.A. Sharp, E.M. Lambe, E.M. Creagh, D.T. Golenbock, J. Tschopp, H. Kornfeld, K.A. Fitzgerald, and E.C. Lavelle. 2011. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of Biological Chemistry 286 (11): 9587–9597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ko, J., et al. 2017. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 8: 40817–40831.

    PubMed  PubMed Central  Google Scholar 

  62. Lee, J.P., et al. 2016. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 12 (6): 907–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chuang, Y.C., W.H. Su, H.Y. Lei, Y.S. Lin, H.S. Liu, C.P. Chang, and T.M. Yeh. 2012. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 7 (5): e37613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y., M.J. Morgan, K. Chen, S. Choksi, and Z.G. Liu. 2012. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119 (12): 2895–2905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Geissmann, F., et al. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327 (5966): 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boulakirba, S., et al. 2018. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports 8 (1):256.

  67. Jacquel, A., S. Obba, L. Boyer, M. Dufies, G. Robert, P. Gounon, E. Lemichez, F. Luciano, E. Solary, and P. Auberger. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119 (19): 4527–4531.

    Article  CAS  PubMed  Google Scholar 

  68. Jacquel, A., et al. 2014. Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8 (7): 1141–1143.

    Article  CAS  Google Scholar 

  69. Mizushima, N., and B. Levine. 2010. Autophagy in mammalian development and differentiation. Nature Cell Biology 12 (9): 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Colosetti, P., et al. 2014. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5 (8): 1092–1098.

    Article  Google Scholar 

  71. Mortensen, M., D.J.P. Ferguson, M. Edelmann, B. Kessler, K.J. Morten, M. Komatsu, and A.K. Simon. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences of the United States of America 107 (2): 832–837.

    Article  PubMed  Google Scholar 

  72. da Silva, B.J., et al. 2014. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages. BMC Cell Biology 15: 37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun, K.T., et al. 2015. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73: 145–153.

    Article  CAS  PubMed  Google Scholar 

  74. Singh, A., and E. Sen. 2017. Reciprocal role of SIRT6 and hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Experimental Cell Research 360 (2): 365–374.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, P., M. Cescon, and P. Bonaldo. 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10 (2): 192–200.

    Article  CAS  PubMed  Google Scholar 

  76. Droin, N., et al. 2010. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115: 78–88.

    Article  CAS  PubMed  Google Scholar 

  77. Obba, S., Z. Hizir, L. Boyer, D. Selimoglu-Buet, A. Pfeifer, G. Michel, M.A. Hamouda, D. Gonçalvès, M. Cerezo, S. Marchetti, S. Rocchi, N. Droin, T. Cluzeau, G. Robert, F. Luciano, B. Robaye, M. Foretz, B. Viollet, L. Legros, E. Solary, P. Auberger, and A. Jacquel. 2015. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11 (7): 1114–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tarique, A.A., et al. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 1–45.

    Article  CAS  Google Scholar 

  79. Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 (5): 593–604.

    Article  CAS  PubMed  Google Scholar 

  80. Ip, W.K.E., et al. 2017. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356: 513–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, M., J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang, and J. du. 2014. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer 13: 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gauthier, A., and M. Ho. 2013. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatology Research 43 (2): 147–154.

    Article  CAS  PubMed  Google Scholar 

  83. Chang, C.P., Y.C. Su, P.H. Lee, and H.Y. Lei. 2013. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9 (4): 619–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chang, C.P., Y.C. Su, C.W. Hu, and H.Y. Lei. 2013. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation 20 (3): 515–523.

    Article  CAS  PubMed  Google Scholar 

  85. Rocher, C., and D.K. Singla. 2013. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One 8 (12): e84009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, W., T. Ma, X.N. Shen, X.F. Xia, G.D. Xu, X.L. Bai, and T.B. Liang. 2012. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Research 72 (6): 1363–1372.

    Article  CAS  PubMed  Google Scholar 

  87. Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology 198 (3): 1006–1014.

    Article  CAS  Google Scholar 

  88. Hu, R., Z.F. Chen, J. Yan, Q.F. Li, Y. Huang, H. Xu, X. Zhang, and H. Jiang. 2014. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death & Disease 5: e1330.

    Article  CAS  Google Scholar 

  89. Descloux, C., V. Ginet, P.G.H. Clarke, J. Puyal, and A.C. Truttmann. 2015. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. International Journal of Developmental Neuroscience 45: 75–85.

    Article  CAS  PubMed  Google Scholar 

  90. Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36 (6): 2403–2417.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Y., Y. Liu, and J. Zhang. 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. The Journal of Surgical Research 198 (1): 41–49.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, L., et al. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.

    Article  CAS  PubMed  Google Scholar 

  93. Pattingre, S., A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.

    Article  CAS  PubMed  Google Scholar 

  94. Mariño, G., M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15 (2): 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8 (10): 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  96. Rubinstein, Assaf D., Miriam Eisenstein, Yaara Ber, Shani Bialik, and Adi Kimchi. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Molecular Cell 44 (5): 698–709.

    Article  CAS  PubMed  Google Scholar 

  97. Byrne, B.G., et al. 2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4 (1): e00620–e00612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fimia, G.M., et al. 2012. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7 (7):e41831.

  99. Periyasamy-Thandavan, S., M. Jiang, Q. Wei, R. Smith, X.M. Yin, and Z. Dong. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney International 74 (5): 631–640.

    Article  CAS  PubMed  Google Scholar 

  100. Yang, C., V. Kaushal, S.V. Shah, and G.P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology. Renal Physiology 294 (4): F777–F787.

    Article  CAS  PubMed  Google Scholar 

  101. Kaushal, G.P., V. Kaushal, C. Herzog, and C. Yang. 2008. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4: 710–712.

    Article  CAS  PubMed  Google Scholar 

  102. Herzog, C., C. Yang, A. Holmes, and G.P. Kaushal. 2012. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology. Renal Physiology 303 (8): F1239–F1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stranks, A.J., A.L. Hansen, I. Panse, M. Mortensen, D.J.P. Ferguson, D.J. Puleston, K. Shenderov, A.S. Watson, M. Veldhoen, K. Phadwal, V. Cerundolo, and A.K. Simon. 2015. Autophagy controls acquisition of aging features in macrophages. Journal of Innate Immunity 7 (4): 375–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matsuzawa, T., E. Fujiwara, and Y. Washi. 2014. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 141 (1): 61–69.

    Article  CAS  PubMed  Google Scholar 

  105. Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N.T. Eissa, K.J. Tracey, A.E. Sama, and H. Wang. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9): 1152–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xia, H., L. Chen, H. Liu, Z. Sun, W. Yang, Y. Yang, S. Cui, S. Li, Y. Wang, L. Song, A.F. Abdelgawad, Y. Shang, and S. Yao. 2017. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Scientific Reports 7 (1): 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams-Bey, Y., C. Boularan, A. Vural, N.N. Huang, I.Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9 (6): e97957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdulnour, R.E., et al. 2014. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proceedings of the National Academy of Sciences of the United States of America 111 (46): 16526–16531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin, J., et al. 2017. Maresin-1 activates autophagy in macrophages via ALX/NF-κB pathway. Journal of Wenzhou Medical University 47: 474–479.

    Google Scholar 

  110. Li, X.J., et al. 2014. Effect of moxibustion on autophagy of macrophages in mice. Hubei Journal of TCM 36: 19–20.

    Article  Google Scholar 

  111. Yu, H.H., et al. 2016. Effects of Huang-Lian-Jie-Du-Decotion containing serum on expressions of autophagy related gene in macrophages. Chinese Journal of Immunology 32: 1150–1164.

    Google Scholar 

Download references

Funding

This work was supported by Shenyang Municipal Science and Technology Commission (Liaoning, China); Project Number 17-230-9-45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Liu, Y. & Zhang, J. Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation 42, 6–19 (2019). https://doi.org/10.1007/s10753-018-0890-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0890-8

KEY WORDS

Navigation