Skip to main content
Log in

Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is an acute inflammatory syndrome in response to infection. In some cases, excessive inflammation from sepsis results in endothelial dysfunction and subsequent increased vascular permeability leading to organ failure. We previously showed that treatment with endothelial progenitor cells, which highly express microRNA-126 (miR-126), improved survival in mice subjected to cecal ligation and puncture (CLP) sepsis. miRNAs are important regulators of gene expression and cell function, play a major role in endothelial homeostasis, and may represent an emerging therapeutic modality. However, delivery of miRNAs to cells in vitro and in vivo is challenging due to rapid degradation by ubiquitous RNases. Herein, we developed a nanoparticle delivery system separately combining deacetylated poly-N-acetyl glucosamine (DEAC-pGlcNAc) polymers with miRNA-126-3p and miRNA-126-5p and testing these combinations in vitro and in vivo. Our results demonstrate that DEAC-pGlcNAc polymers have an appropriate size and zeta potential for cellular uptake and when complexed, DEAC-pGlcNAc protects miRNA from RNase A degradation. Further, DEAC-pGlcNAc efficiently encapsulates miRNAs as evidenced by preventing their migration in an agarose gel. The DEAC-pGlcNAc-miRNA complexes were taken up by multiple cell types and the delivered miRNAs had biological effects on their targets in vitro including pERK and DLK-1. In addition, we found that delivery of DEAC-pGlcNAc alone or DEAC-pGlcNAc:miRNA-126-5p nanoparticles to septic animals significantly improved survival, preserved vascular integrity, and modulated cytokine production. These composite studies support the concept that DEAC-pGlcNAc nanoparticles are an effective platform for delivering miRNAs and that they may provide therapeutic benefit in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torio CM, Andrews RM. National inpatient hospital costs: the most expensive conditions by payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006.

  2. Murphy, S.L., J. Xu, and K.D. Kochanek. 2013. Deaths: final data for 2010. National Vital Statistics Reports 61: 1–117.

    PubMed  Google Scholar 

  3. Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD), 2006.

  4. Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 2063.

    Article  CAS  PubMed  Google Scholar 

  5. Pratt, A.J., and I.J. MacRae. 2009. The RNA-induced silencing complex: a versatile gene-silencing machine. The Journal of Biological Chemistry 284: 17897–17901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neth, P., M. Nazari-Jahantigh, A. Schober, and C. Weber. 2013. MicroRNAs in flow-dependent vascular remodelling. Cardiovascular Research 99: 294–303.

    Article  CAS  PubMed  Google Scholar 

  7. Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2016. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. Journal of Molecular and Cellular Cardiology 97: 47–55.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, S., A.B. Aurora, B.A. Johnson, X. Qi, J. McAnally, J.A. Hill, J.A. Richardson, R. Bassel-Duby, and E.N. Olson. 2008. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell 15: 261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fish, J.E., M.M. Santoro, S.U. Morton, S. Yu, R.F. Yeh, J.D. Wythe, K.N. Ivey, B.G. Bruneau, D.Y.R. Stainier, and D. Srivastava. 2008. miR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell 15: 272–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuhnert, F., M.R. Mancuso, J. Hampton, K. Stankunas, T. Asano, C.Z. Chen, and C.J. Kuo. 2008. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135: 3989–3993.

    Article  CAS  PubMed  Google Scholar 

  11. Tang, R., L. Pei, T. Bai, and J. Wang. 2016. Down-regulation of microRNA-126-5p contributes to overexpression of VEGFA in lipopolysaccharide-induced acute lung injury. Biotechnology Letters 38: 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  12. Fan, H., A.J. Goodwin, E. Chang, B. Zingarelli, K. Borg, S. Guan, P.V. Halushka, and J.A. Cook. 2014. Endothelial progenitor cells and a stromal cell-derived factor-1alpha analogue synergistically improve survival in sepsis. American Journal of Respiratory and Critical Care Medicine 189: 1509–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goodwin, A.J., C. Guo, J.A. Cook, B. Wolf, P.V. Halushka, and H. Fan. 2015. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical Care 19: 440.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou, Y., P. Li, A.J. Goodwin, J.A. Cook, P.V. Halushka, E. Chang, and H. Fan. 2018. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Molecular Therapy 26: 1375–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schober, A., M. Nazari-Jahantigh, Y. Wei, K. Bidzhekov, F. Gremse, J. Grommes, R.T.A. Megens, K. Heyll, H. Noels, M. Hristov, S. Wang, F. Kiessling, E.N. Olson, and C. Weber. 2014. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine 20: 368–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Juliano, R.L., R. Alam, V. Dixit, and H.M. Kang. 2009. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 1: 324–335.

    Article  CAS  PubMed  Google Scholar 

  17. Vournakis JN, Finkielsztein S, Pariser ER, Helton M. Bicompatible poly-β-1→4-N-acetylglucosamine. Google Patents, 2004.

  18. Lindner, H.B., A. Zhang, J. Eldridge, M. Demcheva, P. Tsichlis, A. Seth, et al. 2011. Anti-bacterial effects of poly-N-acetyl-glucosamine nanofibers in cutaneous wound healing: requirement for Akt1. PLoS One 6: e18996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindner, H.B., L.M. Felmly, M. Demcheva, A. Seth, R. Norris, A.D. Bradshaw, et al. 2015. pGlcNAc nanofiber treatment of cutaneous wounds stimulate increased tensile strength and reduced scarring via activation of Akt1. PLoS One 10: e0127876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kong, X.Y., Y.Q. Du, L. Li, J.Q. Liu, G.K. Wang, J.Q. Zhu, et al. 2010. Plasma miR-216a as a potential marker of pancreatic injury in a rat model of acute pancreatitis. World Journal of Gastroenterology : WJG 16: 4599–4604.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, F., X. Jia, Y. Yang, Q. Yang, C. Gao, S. Hu, Y. Zhao, Y. Fan, and X. Yuan. 2016. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia 43: 303–313.

    Article  CAS  PubMed  Google Scholar 

  22. Eliyahu, H., Y. Barenholz, and A.J. Domb. 2005. Polymers for DNA delivery. Molecules 10: 34–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bamrungsap, S., Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu, and W. Tan. 2012. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (London, England) 7: 1253–1271.

    Article  CAS  Google Scholar 

  24. Narasimhan, P., J. Liu, Y.S. Song, J.L. Massengale, and P.H. Chan. 2009. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40: 1467–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gavard, J., and J.S. Gutkind. 2006. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biology 8: 1223–1234.

    Article  CAS  PubMed  Google Scholar 

  26. Hao, D., W. Xiao, R. Liu, P. Kumar, Y. Li, P. Zhou, F. Guo, D.L. Farmer, K.S. Lam, F. Wang, and A. Wang. 2017. Discovery and characterization of a potent and specific peptide ligand targeting endothelial progenitor cells and endothelial cells for tissue regeneration. ACS Chemical Biology 12: 1075–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ametria Harrison and Pengfei Li for their technical support throughout this project. Additionally, we thank Robin Muise-Helmericks and Amanda LaRue for their experimental expertise and project support.

Funding

This work was supported by the NIGMS 1R01GM113995 (HF). This work was also supported by grants NHLBI 5T32HL007260–39 (JJB), 1K23HL135263-01A1 (AG), and UL1 TR 001450 (PVH), and financial and technical supports were provided in part by Marine Polymer Sciences, Inc. Burlington, MA (JV and MD).

Author information

Authors and Affiliations

Author notes

  1. John Vournakis is deceased. This paper is dedicated to his memory.

    • John Vournakis
Authors

Corresponding author

Correspondence to Hongkuan Fan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Animal studies were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee at the Medical University of South Carolina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones Buie, J.N., Zhou, Y., Goodwin, A.J. et al. Application of Deacetylated Poly-N-Acetyl Glucosamine Nanoparticles for the Delivery of miR-126 for the Treatment of Cecal Ligation and Puncture-Induced Sepsis. Inflammation 42, 170–184 (2019). https://doi.org/10.1007/s10753-018-0882-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0882-8

KEY WORDS

Navigation