Skip to main content

Advertisement

Log in

Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Gossypol, a natural polyphenolic compound extracted from cottonseed oil, has been reported to possess pharmacological properties via modulation cell cycle and immune signaling pathway. However, whether gossypol has anti-inflammatory effects against phytohemagglutinin (PHA)-induced cytokine secretion in T lymphocytes through similar mechanism remains unclear. Using the T lymphocytes Jurkat cell line, we found that PHA exposure caused dramatic increase in interleukin-2 (IL-2) mRNA expression as well as IL-2 secretion. All of these PHA-stimulated reactions were attenuated in a dose-dependent manner by being pretreated with gossypol. However, gossypol did not show any in vitro cytotoxic effect at doses of 5–20 μM. As a possible mechanism underlying gossypol action, such as pronounced suppression IL-2 release, robust decreased PHA-induced phosphorylation of p38 and c-Jun N-terminal kinase expressions was found with gossypol pretreatment, but not significant phosphorylation of extracellular signal-regulated kinase expression. Furthermore, gossypol could suppress the Jurkat cells’ growth, which was associated with increased percentage of G1/S phase and decreased fraction of G2 phase in flow cytometry test. We conclude that gossypol exerts anti-inflammatory effects probably through partial attenuation of mitogen-activated protein kinase (phosphorylated JNK and p38) signaling and cell cycle arrest in Jurkat cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ho, I.C., J.I. Kim, S.J. Szabo, and L.H. Glimcher. 1999. Tissue-specific regulation of cytokine gene expression. Cold Spring Harbor Symposia on Quantitative Biology 64: 573–584.

    Article  CAS  Google Scholar 

  2. Walker, E., T. Leemhuis, and W. Roeder. 1988. Murine B lymphoma cell lines release functionally active interleukin 2 after stimulation with Staphylococcus aureus. Journal of Immunology 140: 859–865.

    CAS  Google Scholar 

  3. Katz, L.H., U. Kopylov, E. Fudim, M. Yavzori, O. Picard, B. Ungar, R. Eliakim, S. Ben-Horin, and Y. Chowers. 2014. Expression of IL-2, IL-17 and TNF-α in patients with Crohn’s disease treated with anti-TNF antibodies. Clinics and Research in Hepatology and Gastroenterology 38: 491–498.

    Article  CAS  Google Scholar 

  4. Rosenberg, S.A., M.T. Lotze, L.M. Muul, A.E. Chang, F.P. Avis, S. Leitman, W.M. Linehan, C.N. Robertson, R.E. Lee, J.T. Rubin, C.A. Seipp, C.G. Simpson, and D.E. White. 1987. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. New England Journal of Medicine 316: 889–897.

    Article  CAS  Google Scholar 

  5. Yang, Z.J., W.S. Ye, G.H. Cui, Y. Guo, and S.P. Xue. 2004. Combined administration of low-dose gossypol acetic acid with desogestrel/mini-dose ethinylestradiol/testosterone undecanoate as an oral contraceptive for men. Contraception 70: 203–211.

    Article  CAS  Google Scholar 

  6. Coutinho, E.M. 2002. Gossypol: a contraceptive for men. Contraception 65: 259–263.

    Article  CAS  Google Scholar 

  7. Cui, G.H., Z.L. Xu, Z.J. Yang, Y.Y. Xu, and S.P. Xue. 2004. A combined regimen of gossypol plus methyltestosterone and ethinylestradiol as a contraceptive induces germ cell apoptosis and expression of its related genes in rats. Contraception 70: 335–342.

    Article  CAS  Google Scholar 

  8. Wen, W. 1980. China invents male birth control pill. American Journal of Chinese Medicine 8: 195–197.

    Article  CAS  Google Scholar 

  9. Jiang, J., V. Slivova, A. Jedinak, and D. Sliva. 2012. Gossypol inhibits growth, invasiveness, and angiogenesis in human prostate cancer cells by modulating NF-κB/AP-1 dependent- and independent-signaling. Clinical and Experimental Metastasis 29: 165–178.

    Article  CAS  Google Scholar 

  10. Ye, W., H.L. Chang, L.S. Wang, Y.W. Huang, S. Shu, Y. Sugimoto, M.K. Dowd, P.J. Wan, and Y.C. Lin. 2010. Induction of apoptosis by (-)-gossypol-enriched cottonseed oil in human breast cancer cells. International Journal of Molecular Medicine 26: 113–119.

    CAS  PubMed  Google Scholar 

  11. Chen, G., R. Wang, H. Chen, L. Wu, R.S. Ge, and Y. Wang. 2016. Gossypol ameliorates liver fibrosis in diabetic rats induced by high-fat diet and streptozocin. Life Sciences 149: 58–64.

    Article  CAS  Google Scholar 

  12. Huo, M., R. Gao, L. Jiang, X. Cui, L. Duan, X. Deng, S. Guan, J. Wei, L.W. Soromou, H. Feng, and G. Chi. 2013. Suppression of LPS-induced inflammatory responses by gossypol in RAW 264.7 cells and mouse models. International Immunopharmacology 15: 442–449.

    Article  CAS  Google Scholar 

  13. Liu, Z., Z. Yang, Y. Fu, F. Li, D. Liang, E. Zhou, X. Song, W. Zhang, X. Zhang, Y. Cao, and N. Zhang. 2013. Protective effect of gossypol on lipopolysaccharide-induced acute lung injury in mice. Inflammation Research 62: 499–506.

    Article  CAS  Google Scholar 

  14. Shidaifat, F., H. Canatan, S.K. Kulp, Y. Sugimoto, W.Y. Chang, Y. Zhang, R.W. Brueggemeier, W.J. Somers, and Y.C. Lin. 1996. Inhibition of human prostate cancer cells growth by gossypol is associated with stimulation of transforming growth factor-β. Cancer Letters 107: 37–44.

    Article  CAS  Google Scholar 

  15. Moon, D.O., M.O. Kim, J.D. Lee, and G.Y. Kim. 2008. Gossypol suppresses NF-kappaB activity and NF-κB-related gene expression in human leukemia U937 cells. Cancer Letters 264: 192–200.

    Article  CAS  Google Scholar 

  16. Xu, W.B., L.H. Xu, H.S. Lu, D.Y. Ou-Yang, H.J. Shi, J.F. Di, and X.H. He. 2009. The immunosuppressive effect of gossypol in mice is mediated by inhibition of lymphocyte proliferation and by induction of cell apoptosis. Acta Pharmacologica Sinica 30: 597–604.

    Article  CAS  Google Scholar 

  17. Fang, H., R. Cordoba-Rodriguez, C.S. Lankford, and D.M. Frucht. 2005. Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T cells. Journal of Immunology 174: 4966–4971.

    Article  CAS  Google Scholar 

  18. Xiang, Q.D., Q. Yu, H. Wang, M.M. Zhao, S.Y. Liu, S.P. Nie, and M.Y. Xie. 2017. Immunomodulatory activity of Ganoderma atrum polysaccharide on purified T lymphocytes through Ca2+/CaN and mitogen-activated protein kinase pathway based on RNA sequencing. Journal of Agricultural and Food Chemistry 65: 5306–5315.

    Article  CAS  Google Scholar 

  19. Jhun, B.S., J.Y. Lee, Y.T. Oh, J.H. Lee, W. Choe, H.H. Baik, S.S. Kim, K.S. Yoon, J. Ha, and I. Kang. 2006. Inhibition of AMP-activated protein kinase suppresses IL-2 expression through down-regulation of NF-AT and AP-1 activation in Jurkat T cells. Biochemical and Biophysical Research Communications 351: 986–992.

    Article  CAS  Google Scholar 

  20. Kaewthawee, N., and S. Brimson. 2013. The effects of ursolic acid on cytokine production via the MAPK pathways in leukemic T-cells. Experimental and Clinical Sciences Journal 12: 102–114.

    PubMed  Google Scholar 

  21. Hwang, G.S., S. Hu, Y.H. Lin, S.T. Chen, T.K. Tang, P.S. Wang, and S.W. Wang. 2013. Arecoline inhibits interleukin-2 secretion in Jurkat cells by decreasing the expression of α7-nicotinic acetylcholine receptors and prostaglandin E2. Journal of Physiology and Pharmacology 64: 535–543.

    CAS  PubMed  Google Scholar 

  22. Guillouf, C., X. Grana, M. Selvakumaran, A. De Luca, A. Giordano, B. Hoffman, and D.A. Liebermann. 1995. Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood 85: 2691–2698.

    CAS  PubMed  Google Scholar 

  23. Hsia, S.M., K.H. Lin, W.C. Chiang, C.H. Wu, T.M. Shieh, T.C. Huang, H.Y. Chen, and L.C. Lin. 2017. Effects of adlay hull and testa ethanolic extracts on the growth of uterine leiomyoma cells. Adaptive Medicine 9: 85–96.

    Article  Google Scholar 

  24. Hsieh, Y.T., C.Y. Jian, Y.F. Wang, J.C. Chou, S. Hu, P.S. Wang, C.M. Hwu, and S.W. Wang. 2017. Effects of tomatine on aldosterone release from Zona glomerulosa cells in 5/6 nephrectomized male rats. Adaptive Medicine 9: 130–139.

    Article  Google Scholar 

  25. Morishima, C., M.C. Shuhart, C.C. Wang, D.M. Paschal, M.C. Apodaca, Y. Liu, D.D. Sloan, T.N. Graf, N.H. Oberlies, D.Y.–.W. Lee, K.R. Jerome, and S.J. Polyak. 2010. Silymarin inhibits in vitro T-cell proliferation and cytokine production in hepatitis C virus infection. Gastroenterology 138: 671–681.

    Article  CAS  Google Scholar 

  26. Chang, M.C., J.Y. Wu, H.F. Liao, Y.J. Chen, and C.D. Kuo. 2015. N-Farnesyloxy-norcantharimide inhibits progression of human leukemic Jurkat T cells through regulation of mitogen-activated protein kinase and interleukin-2 production. Anti-Cancer Drugs 26: 1034–1042.

    Article  CAS  Google Scholar 

  27. Wang, Y., and P.N. Rao. 1984. Effect of gossypol on DNA synthesis and cell cycle progression of mammalian cells in vitro. Cancer Research 44: 35–38.

    CAS  PubMed  Google Scholar 

  28. Ligueros, M., D. Jeoung, B. Tang, D. Hochhauser, M.M. Reidenberg, and M. Sonenberg. 1997. Gossypol inhibition of mitosis, cyclin D1 and Rb protein in human mammary cancer cells and cyclin-D1 transfected human fibrosarcoma cells. British Journal of Cancer 76: 21–28.

    Article  CAS  Google Scholar 

  29. Thomas, M., V. von Hagen, Y. Moustafa, M.P. Montmasson, and J.D. Monet. 1991. Effects of gossypol on the cell cycle phases in T-47D human breast cancer cells. Anticancer Research 11: 1469–1475.

    CAS  PubMed  Google Scholar 

  30. Hsiao, W.T., M.D. Tsai, G.M. Jow, L.T. Tien, and Y.J. Lee. 2012. Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. Molecular Vision 18: 2033–2042.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, J.S., Y.L. Hsu, P.L. Kuo, L.C. Chiang, and C.C. Lin. 2004. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clinical and Experimental Pharmacology and Physiology 31: 716–722.

    Article  CAS  Google Scholar 

  32. Wagner, E.F., and A.R. Nebreda. 2009. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews. Cancer 9: 537–549.

    Article  CAS  Google Scholar 

  33. Chen, Z., T.B. Gibson, F. Robinson, L. Silvestro, G. Pearson, B. Xu, A. Wright, C. Vanderbilt, and M.H. Cobb. 2001. MAP kinases. Chemical Reviews 101: 2449–2476.

    Article  CAS  Google Scholar 

  34. Krens, S.F., H.P. Spaink, and B.E. Snaar-Jagalska. 2006. Functions of the MAPK family in vertebrate-development. FEBS Letters 580: 4984–4990.

    Article  CAS  Google Scholar 

  35. Pearson, G., F. Robinson, T. Beers Gibson, B.E. Xu, M. Karandikar, K. Berman, and M.H. Cobb. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews 22: 153–183.

    CAS  PubMed  Google Scholar 

  36. Schaeffer, H.J., and M.J. Weber. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Molecular and Cellular Biology 19: 2435–2544.

    Article  CAS  Google Scholar 

  37. Raingeaud, J., S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch, and R.J. Davis. 1995. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Journal of Biological Chemistry 270: 7420–7426.

    Article  CAS  Google Scholar 

  38. Vassalli, G., G. Milano, and T. Moccetti. 2012. Role of mitogen-activated protein kinases in myocardial ischemia–reperfusion injury during heart transplantation. Journal of Transplantation 2012: 928954.

    Article  Google Scholar 

  39. Adjei, A.A. 2005. The role of mitogen-activated ERK-kinase inhibitors in lung cancer therapy. Clinical Lung Cancer 7: 221–223.

    Article  CAS  Google Scholar 

  40. de Bono, J.S., and E.K. Rowinsky. 2002. Therapeutics targeting signal transduction for patients with colorectal carcinoma. British Medical Bulletin 64: 227–254.

    Article  Google Scholar 

  41. De Luca, A., M.R. Maiello, A. D’Alessio, M. Pergameno, and N. Normanno. 2012. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opinion on Therapeutic Targets 16: S17–S27.

    Article  Google Scholar 

  42. Santen, R.J., R.X. Song, R. McPherson, R. Kumar, L. Adam, M.H. Jeng, and W. Yue. 2002. The role of mitogen-activated protein (MAP) kinase in breast cancer. Journal of Steroid Biochemistry and Molecular Biology 80: 239–256.

    Article  CAS  Google Scholar 

  43. Xu, L., D. Yang, S. Wang, W. Tang, M. Liu, M. Davis, J. Chen, J.M. Rae, T. Lawrence, and M.E. Lippman. 2005. (-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Molecular Cancer Therapeutics 4: 197–205.

    CAS  PubMed  Google Scholar 

  44. Ouwens, D.M., D.S. Gomes de Mesquita, J. Dekker, and J.A. Maassen. 2001. Hyperosmotic stress activates the insulin receptor in CHO cells. Biochimica et Biophysica Acta 1540: 97–106.

    Article  CAS  Google Scholar 

  45. Kyriakis, J.M., and J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews 81: 807–869.

    Article  CAS  Google Scholar 

  46. Juretic, N., J.F. Santibanez, C. Hurtado, and J. Martinez. 2001. ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. Journal of Cellular Biochemistry 83: 92–98.

    Article  CAS  Google Scholar 

  47. Yosimichi, G., T. Nakanishi, T. Nishida, T. Hattori, T. Takano-Yamamoto, and M. Takigawa. 2001. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). European Journal of Biochemistry 268: 6058–6065.

    Article  CAS  Google Scholar 

  48. Sung, B., J. Ravindran, S. Prasad, M.K. Pandey, and B.B. Aggarwal. 2010. Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. Journal of Biological Chemistry 285: 35418–35427.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The English editing provided by Miss Jennifer S. Wang is appreciated.

Funding

The authors were financially supported in part by grants CMRPD1C0491, CMRPD1C0492, CMRPG5D0071, CMRPG5R0011, CMRPD3E0042, CMRPG3F080 (1-3), and CMRPG3E015 (1-3) from Chang Gung Memorial Hospital Foundation, Taiwan, ROC.

Author information

Authors and Affiliations

Author notes

  1. Chien-Wei Chen and Sindy Hu contributed equally to this work.

    Authors

    Corresponding authors

    Correspondence to Paulus S. Wang or Shyi-Wu Wang.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Chen, CW., Hu, S., Tsui, KH. et al. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 41, 2265–2274 (2018). https://doi.org/10.1007/s10753-018-0868-6

    Download citation

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10753-018-0868-6

    KEY WORDS

    Navigation