Skip to main content

Advertisement

Log in

Cytokine Production Is Differentially Modulated in Malignant and Non-malignant Tissues in ST2-Receptor Deficient Mice

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

IL-33/ST2 axis has been shown to exert both pro- and anti- effects in wound healing and tumor development. To further understand the role of this cytokine complex, we characterized comparatively the inflammatory component of a malignant tissue and non-malignant tissue in mice lacking ST2 receptor (ST2-KO). KO mice and their wild-type (WT) counterparts were either implanted subcutaneously with polyether-polyurethane sponge discs to induce non-malignant fibrovascular tissue growth or inoculated with 4T1 cells to induce mammary tumor. Loss of ST2 receptor in mice resulted in enhanced mammary tumor and fibrovascular tissue relative to the WT animals. The inflammatory parameters (MPO and NAG activities, levels of the cytokines CXCL1/KC, CCL2, TNF-α, TGF-β1, and mast cell number) were differentially modulated in both tissues. In tumors, these parameters were, overall, lower compared with those in tumors of WT mice. In KO implants, CXCL1/KC and TNF-α levels increased; MPO, NAG, and CCL2 levels decreased relative to the WT implants. In addition, deletion of ST2 receptor inhibited mast cell recruitment but had no effect on TGF-β1 levels in implants. Our study has shown antitumorigenic effect of ST2 in mammary tumor and this may be mediated by downregulation of pro-inflammatory cytokines (CXCL1/KC, CCL2, TNF-α, and TGF-β1). Conversely, in the fibrovascular tissue, lack of ST2 receptor resulted in differential modulation of cytokine production. Differential signaling mechanisms may be activated by IL-33/ST2 axis to modulate cytokine production in malignant and non-malignant proliferative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dvorak, H.F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine 315: 1650–1659.

    Article  CAS  Google Scholar 

  2. Naldini, A., and F. Carraro. 2005. Role of inflammatory mediators in angiogenesis. Current Drug Targets. Inflammation and Allergy 4: 3–8.

    Article  CAS  Google Scholar 

  3. Ye, J., D. Wu, P. Wu, Z. Chen, and J. Huang. 2014. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biology 35: 3945–3951.

    Article  CAS  Google Scholar 

  4. Lin, W.W., and M. Karin. 2007. A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of Clinical Investigation 117: 1175–1183.

    Article  CAS  Google Scholar 

  5. Wasmer, M.H., and P. Krebs. 2016. The role of IL-33-dependent inflammation in the tumor microenvironment. Frontiers in Immunology 7: 682.

    PubMed  Google Scholar 

  6. Miller, A.M. 2011. Role of IL-33 in inflammation and disease. Journal of Inflammation (London) 8: 22.

    Article  CAS  Google Scholar 

  7. Srikrishna, G., and H.H. Freeze. 2009. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11: 615–628.

    Article  CAS  Google Scholar 

  8. Cayrol, C., and J.P. Girard. 2014. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Current Opinion in Immunology 31: 31–37.

    Article  CAS  Google Scholar 

  9. Kakkar, R., and R.T. Lee. 2008. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery 7: 827–840.

    Article  CAS  Google Scholar 

  10. Oshio, T., M. Komine, H. Tsuda, S.I. Tominaga, H. Saito, S. Nakae, and M. Ohtsuki. 2017. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science 85: 106–114.

    Article  CAS  Google Scholar 

  11. McHedlidze, T., M. Waldner, S. Zopf, J. Walker, A.L. Rankin, M. Schuchmann, D. Voehringer, A.N. McKenzie, M.F. Neurath, S. Pflanz, and S. Wirtz. 2013. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357–371.

    Article  CAS  Google Scholar 

  12. Allakhverdi, Z., D.E. Smith, M.R. Comeau, and G. Delespesse. 2007. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of Immunology 179: 2051–2054.

    Article  CAS  Google Scholar 

  13. Iikura, M., H. Suto, N. Kajiwara, K. Oboki, T. Ohno, Y. Okayama, H. Saito, S.J. Galli, and S. Nakae. 2007. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation 87: 971–978.

    Article  CAS  Google Scholar 

  14. Gao, X., X. Wang, Q. Yang, X. Zhao, W. Wen, G. Li, J. Lu, W. Qin, Y. Qi, F. Xie, J. Jiang, C. Wu, X. Zhang, X. Chen, H. Turnquist, Y. Zhu, and B. Lu. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. Journal of Immunology 194: 438–445.

    Article  CAS  Google Scholar 

  15. Mertz, K.D., L.F. Mager, M.H. Wasmer, T. Thiesler, V.H. Koelzer, G. Ruzzante, S. Joller, J.R. Murdoch, T. Brummendorf, V. Genitsch, et al. 2016. The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncoimmunology 5: e1062966.

    Article  Google Scholar 

  16. Zhang, Y., C. Davis, S. Shah, D. Hughes, J.C. Ryan, D. Altomare, and M.M. Pena. 2017. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Molecular Carcinogenesis 56: 272–287.

    Article  CAS  Google Scholar 

  17. Milovanovic, M., V. Volarevic, G. Radosavljevic, I. Jovanovic, N. Pejnovic, N. Arsenijevic, and M.L. Lukic. 2012. IL-33/ST2 axis in inflammation and immunopathology. Immunologic Research 52: 89–99.

    Article  CAS  Google Scholar 

  18. Almeida, S.A., L.A. Orellano, L.X. Pereira, C.T. Viana, P.P. Campos, S.P. Andrade, and M.A. Ferreira. 2017. Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomedicine & Pharmacotherapy 86: 715–724.

    Article  Google Scholar 

  19. Orellano, L.A., S.A. Almeida, P.P. Campos, and S.P. Andrade. 2015. Angiopreventive versus angiopromoting effects of allopurinol in the murine sponge model. Microvascular Research 101: 118–126.

    Article  CAS  Google Scholar 

  20. Pereira, L.X., C.T.R. Viana, L.A.A. Orellano, S.A. Almeida, A.C. Vasconcelos, A.M. Goes, A. Birbrair, S.P. Andrade, and P.P. Campos. 2017. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sciences 176: 67–74.

    Article  CAS  Google Scholar 

  21. Viana, C.T., P.R. Castro, S.M. Marques, M.T. Lopes, R. Goncalves, P.P. Campos, and S.P. Andrade. 2015. Correction: differential contribution of acute and chronic inflammation to the development of murine mammary 4T1 tumors. PLoS One 10: e0138408.

    Article  Google Scholar 

  22. Townsend, M.J., P.G. Fallon, D.J. Matthews, H.E. Jolin, and A.N.J. McKenzie. 2000. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. Journal of Experimental Medicine 191: 1069–1075.

    Article  CAS  Google Scholar 

  23. Brint, E.K., D.M. Xu, H.Y. Liu, A. Dunne, A.N.J. McKenzie, L.A.J. O'Neill, and F.Y. Liew. 2004. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology 5: 373–379.

    Article  CAS  Google Scholar 

  24. Andrade, S.P., T.P. Fan, and G.P. Lewis. 1987. Quantitative in-vivo studies on angiogenesis in a rat sponge model. British Journal of Experimental Pathology 68: 755–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Andrade, S.P., and M.A. Ferreira. 2009. The sponge implant model of angiogenesis. Methods in Molecular Biology 467: 295–304.

    Article  CAS  Google Scholar 

  26. Ghoneum, M., N.K. Badr El-Din, E. Noaman, and L. Tolentino. 2008. Saccharomyces cerevisiae, the Baker’s Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice. Cancer Immunology, Immunotherapy 57: 581–592.

    Article  Google Scholar 

  27. Balkwill, F., and A. Mantovani. 2001. Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  CAS  Google Scholar 

  28. Gao, K., X. Li, L. Zhang, L. Bai, W. Dong, G. Shi, X. Xia, and L. Wu. 2013. Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Letters 335: 463–471.

    Article  CAS  Google Scholar 

  29. O'Donnell, C., A. Mahmoud, J. Keane, C. Murphy, D. White, S. Carey, M. O'Riordain, M.W. Bennett, E. Brint, and A. Houston. 2016. An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. British Journal of Cancer 114: 37–43.

    Article  CAS  Google Scholar 

  30. Jovanovic, I.P., N.N. Pejnovic, G.D. Radosavljevic, J.M. Pantic, M.Z. Milovanovic, N.N. Arsenijevic, and M.L. Lukic. 2014. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. International Journal of Cancer 134: 1669–1682.

    Article  CAS  Google Scholar 

  31. Tung, H.Y., B. Plunkett, S.K. Huang, and Y. Zhou. 2014. Murine mast cells secrete and respond to interleukin-33. Journal of Interferon & Cytokine Research 34: 141–147.

    Article  CAS  Google Scholar 

  32. Overed-Sayer, C., L. Rapley, T. Mustelin, and D.L. Clarke. 2013. Are mast cells instrumental for fibrotic diseases? Frontiers in Pharmacology 4: 174.

    PubMed  Google Scholar 

  33. Dos Santos, J.C., L.Z. Grund, C.S. Seibert, E.E. Marques, A.B. Soares, V.F. Quesniaux, B. Ryffel, M. Lopes-Ferreira, and C. Lima. 2017. Stingray venom activates IL-33 producing cardiomyocytes, but not mast cell, to promote acute neutrophil-mediated injury. Scientific Reports 7: 7912.

    Article  Google Scholar 

  34. Enoksson, M., C. Moller-Westerberg, G. Wicher, P.G. Fallon, K. Forsberg-Nilsson, C. Lunderius-Andersson, and G. Nilsson. 2013. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121: 530–536.

    Article  CAS  Google Scholar 

  35. Hueber, A.J., J.C. Alves-Filho, D.L. Asquith, C. Michels, N.L. Millar, J.H. Reilly, G.J. Graham, F.Y. Liew, A.M. Miller, and I.B. McInnes. 2011. IL-33 induces skin inflammation with mast cell and neutrophil activation. European Journal of Immunology 41: 2229–2237.

    Article  CAS  Google Scholar 

  36. Yin, H., X. Li, S. Hu, T. Liu, B. Yuan, H. Gu, Q. Ni, X. Zhang, and F. Zheng. 2013. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Molecular Immunology 56: 347–353.

    Article  CAS  Google Scholar 

  37. Griesenauer, B., and S. Paczesny. 2017. The ST2/IL-33 axis in immune cells during inflammatory diseases. Frontiers in Immunology 8: 475.

    Article  Google Scholar 

  38. Lin, J., G.Q. Zhao, Q. Wang, Q. Xu, C.Y. Che, L.T. Hu, N. Jiang, and L.L. Zhang. 2013. Regulation of interleukin 33/ST2 signaling of human corneal epithelium in allergic diseases. International Journal of Ophthalmology 6: 23–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Luzina, I.G., P. Kopach, V. Lockatell, P.H. Kang, A. Nagarsekar, A.P. Burke, J.D. Hasday, N.W. Todd, and S.P. Atamas. 2013. Interleukin-33 potentiates bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 49: 999–1008.

    Article  CAS  Google Scholar 

  40. Ali, S., A. Mohs, M. Thomas, J. Klare, R. Ross, M.L. Schmitz, and M.U. Martin. 2011. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. Journal of Immunology 187: 1609–1616.

    Article  CAS  Google Scholar 

  41. Kunisch, E., S. Chakilam, M. Gandesiri, and R.W. Kinne. 2012. IL-33 regulates TNF-alpha dependent effects in synovial fibroblasts. International Journal of Molecular Medicine 29: 530–540.

    Article  CAS  Google Scholar 

  42. Hodzic, Z., E.M. Schill, A.M. Bolock, and M. Good. 2017. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine 100: 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The histological microscopic data shown in this work was obtained using the microscopes and equipment in the Centro de Aquisição e Processamento de Imagens (CAPI-ICB/UFMG). The authors would like to thank Dr. Faria AMC for assistance with reproduction, support, and care of ST2KO animals. Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG-MG/Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) contributed to this study with scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Peixoto Campos.

Ethics declarations

The use of animals and procedures for this study was approved by the Ethics Committee of Animal Experimentation (CEUA) of Federal University of Minas Gerais, (protocol number 45/2014) and all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, C.T.R., Orellano, L.A.A., Pereira, L.X. et al. Cytokine Production Is Differentially Modulated in Malignant and Non-malignant Tissues in ST2-Receptor Deficient Mice. Inflammation 41, 2041–2051 (2018). https://doi.org/10.1007/s10753-018-0847-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0847-y

KEY WORDS

Navigation