Skip to main content

Advertisement

Log in

The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of probenecid (Pro) as an inhibitor of the pannexin-1 (Panx-1) channel-mediated release of intracellular ATP to the extracellular compartment on inflammation, cellular energy crisis, and organ injury in a rabbit sepsis model induced by Escherichia coli lipopolysaccharides (LPS). A total of 24 anesthetized and ventilated rabbits were randomly assigned to receive one of four treatments: infusion of LPS without Pro (LPS group), infusion of LPS with Pro (LPS + Pro group), sham operation without Pro (normal group), and sham operation with Pro (normal + Pro group). The LPS group had significantly higher serum ATP levels, serum inflammatory factor levels (TNF-α, IL-6, and IL-1β), and lower ATP concentrations and ATP/ADP ratios in the skeletal muscle tissue than the normal group. Compared to that at baseline, the expression of Panx-1 in peripheral blood cells increased significantly after the infusion of LPS (fluorescence intensity of Panx-1: T0 (baseline) vs. T1 (post-LPS) = 10 ± 1.2 vs. 84 ± 48, P < 0.0001; paired differences 73 ± 46, P = 0.024). Moreover, the LPS group exhibited higher expression of Panx-1 in the skeletal muscle tissue than the normal group. The serum ATP level was significantly positively correlated with IL-1β (R = 0.602, P = 0.001), IL-6 (R = 0.381, P = 0.033), and TNF-α (R = 0.514, P = 0.005) in 24 paired measurements. Compared to the LPS group, the LPS + Pro group had significantly lower levels of inflammatory factors (TNF-α, IL-6, and IL-1β) and serum ATP. In the skeletal muscle tissue, the LPS + Pro group also had a higher ATP concentration (1.1 ± 0.15 vs. 1.33 ± 0.17, P = 0.041) and ATP/ADP ratio (0.37 ± 0.03 vs. 0.51 ± 0.06, P = 0.002) and a lower histopathological damage score (4.67 ± 0.52 vs. 3 ± 0.63, P = 0.004). An overexpression of Panx-1 channel might be responsible for the strong inflammatory response, high serum ATP level, and skeletal muscle cellular energy crisis and histopathological damages in sepsis. Inhibiting Panx-1 channel-mediated release of intracellular ATP could decrease the above-mentioned injuries, and Panx-1 might be a potential therapeutic target in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

ADP:

adenosine diphosphate

Pro:

probenecid

Panx-1:

pannexin 1

LPS:

lipopolysaccharides

References

  1. He, H.W., Y. Long, X. Zhou, X. Wang, H. Zhang, W. Chai, N. Cui, H. Wang, and D. Liu. 2018. Oxygen-flow-pressure targets for resuscitation in critical hemodynamic therapy. Shock 49: 15–23.

    Article  Google Scholar 

  2. Crouser, E. 2004. Mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Mitochondrion 4: 729–741.

    Article  CAS  Google Scholar 

  3. Albuszies, G., P. Radermacher, J. Vogt, U. Wachter, S. Weber, M. Schoaff, M. Georgieff, and E. Barth. 2005. Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Critical Care Medicine 33: 2332–2338.

    Article  Google Scholar 

  4. Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, and M. Singer. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223.

    Article  CAS  Google Scholar 

  5. Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association 315 (8): 801–810.

    Article  CAS  Google Scholar 

  6. Rhodes, A., L.E. Evans, W. Alhazzani, M.M. Levy, M. Antonelli, R. Ferrer, A. Kumar, J.E. Sevransky, C.L. Sprung, M.E. Nunnally, B. Rochwerg, G.D. Rubenfeld, D.C. Angus, D. Annane, R.J. Beale, G.J. Bellinghan, G.R. Bernard, J.D. Chiche, C. Coopersmith, D.P. de Backer, C.J. French, S. Fujishima, H. Gerlach, J.L. Hidalgo, S.M. Hollenberg, A.E. Jones, D.R. Karnad, R.M. Kleinpell, Y. Koh, T.C. Lisboa, F.R. Machado, J.J. Marini, J.C. Marshall, J.E. Mazuski, L.A. McIntyre, A.S. McLean, S. Mehta, R.P. Moreno, J. Myburgh, P. Navalesi, O. Nishida, T.M. Osborn, A. Perner, C.M. Plunkett, M. Ranieri, C.A. Schorr, M.A. Seckel, C.W. Seymour, L. Shieh, K.A. Shukri, S.Q. Simpson, M. Singer, B.T. Thompson, S.R. Townsend, T. van der Poll, J.L. Vincent, W.J. Wiersinga, J.L. Zimmerman, and R.P. Dellinger. 2017. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine 45: 486–552.

    Article  Google Scholar 

  7. Isakson, B.E., and R.J. Thompson. 2014. Pannexin-1 as a potentiator of ligand-gated receptor signaling Channels. Austin 8 (2): 118–123.

    CAS  Google Scholar 

  8. Alves, L.A., R.A. de Melo Reis, C.A. de Souza, et al. 2014. The P2X7 receptor: shifting from a low- to a high-conductance channel—an enigmatic phenomenon? Biochimica et Biophysica Acta 1838 (10): 2578–2587.

    Article  CAS  Google Scholar 

  9. Samavati, L., I. Lee, I. Mathes, F. Lottspeich, and M. Hüttemann. 2008. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. The Journal of Biological Chemistry 283 (30): 21134–21144.

    Article  CAS  Google Scholar 

  10. Mariappan, N., C.M. Elks, B. Fink, and J. Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radical Biology & Medicine 46 (4): 462–470.

    Article  CAS  Google Scholar 

  11. Shestopalov, V.I., and Y. Panchin. 2008. Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65: 376–394.

    Article  CAS  Google Scholar 

  12. Lee, D.Y., I.H. Choi, C.Y. Chung, P.H. Chung, J.G. Chi, and Y.L. Suh. 1993. Effect of tibial lengthening on the gastrocnemius muscle: a histopathologic and morphometric study in rabbits. Acta Orthopaedica Scandinavica 64 (6): 688–692.

    Article  CAS  Google Scholar 

  13. Chekeni, F.B., M.R. Elliott, J.K. Sandilos, S.F. Walk, J.M. Kinchen, E.R. Lazarowski, A.J. Armstrong, S. Penuela, D.W. Laird, G.S. Salvesen, B.E. Isakson, D.A. Bayliss, and K.S. Ravichandran. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (7317): 863–867.

    Article  CAS  Google Scholar 

  14. Idzko, M., D. Ferrari, and H.K. Eltzschig. 2014. Nucleotide signalling during inflammation. Nature 2509: 310–307.

    Article  Google Scholar 

  15. Adinolfi, E., M.G. Callegari, D. Ferrari, et al. 2005. Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Molecular Biology of the Cell 16 (7): 3260–3272.

    Article  CAS  Google Scholar 

  16. Luis, A. Cea, Riquelme Anibal Manuel, et al. 2015. Pannexin 1 channels in skeletal muscles. Hypothesis and Theory Article 5 (135): 1–6.

    Google Scholar 

  17. Abruzzo, P.M., S. di Tullio, C. Marchionni, S. Belia, G. Fanó, S. Zampieri, U. Carraro, H. Kern, G. Sgarbi, G. Lenaz, and M. Marini. 2010. Oxidative stress in the denervated muscle. Free Radical Research 44: 563–576.

    Article  CAS  Google Scholar 

  18. (2016) Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics 38(5):1054–65.

  19. Cauwels, A., E. Rogge, B. Vandendriessche, et al. 2014. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death & Disease 5: e1102.

    Article  CAS  Google Scholar 

  20. Sumi, Y., T. Woehrle, Y. Chen, Y. Bao, X. Li, Y. Yao, Y. Inoue, H. Tanaka, and W.G. Junger. 2014. Plasma ATP is required for neutro-phil activation in a mouse sepsis model. Shock 42: 142–147.

    Article  CAS  Google Scholar 

  21. Csóka, B., Z.H. Németh, G. Törő, B. Koscsó, E. Kókai, S.C. Robson, K. Enjyoji, R.H. Rolandelli, K. Erdélyi, P. Pacher, and G. Haskó. 2015. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. The FASEB Journal 29: 25–36.

    Article  Google Scholar 

  22. Li, X., Y. Kondo, Y. Bao, L. Staudenmaier, A. Lee, J. Zhang, C. Ledderose, and W.G. Junger. 2017. Systemic adenosine triphosphate impairs neutrophil chemotaxis and host defense in Sepsis. Critical Care Medicine 45 (1): e97–e104.

    Article  CAS  Google Scholar 

  23. Woehrle, T., L. Yip, A. Elkhal, Y. Sumi, Y. Chen, Y. Yao, P.A. Insel, and W.G. Junger. 2010. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116 (18): 3475–3484.

    Article  CAS  Google Scholar 

  24. Cekic, C., and J. Linden. 2016. Purinergic regulation of the immune system. Nature Reviews. Immunology 16 (3): 177–192.

    Article  CAS  Google Scholar 

  25. Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? J Thorac Dis. 8 (7): E552–E557.

    Article  Google Scholar 

  26. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic Shock. N Engl J Med. Jan 19. [Epub ahead of print], 2018.

  27. Shmygalev, S., M. Damm, L. Knels, A. Strassburg, K. Wünsche, R. Dumke, S.N. Stehr, T. Koch, and A.R. Heller. 2016. IgM-enriched solution BT086 improves host defense capacity and energy store preservation in a rabbit model of endotoxemia. Acta Anaesthesiologica Scandinavica 60 (4): 502–512.

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded by the Beijing Municipal Natural Science Foundation (Youth project no. 7174341).

Author information

Authors and Affiliations

Authors

Contributions

Huaiwu He, Yun Long, Dawei Liu, Xiaoting Wang, and Bo Yao drafted the manuscript and revised it for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dawei Liu.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Key Message

• A overhigh expression of Panx-1 might be related to an unregulated inflammatory response, a high serum ATP and cellular energy crisis in sepsis.

• The inhibition of Panx-1 channel could reduce serum ATP and restore the skeletal tissue cellular ATP, attenuation of inflammatory response, and histopathological damage in sepsis.

• Panx-1 might be a potential therapeutic target in sepsis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Liu, D., Long, Y. et al. The Pannexin-1 Channel Inhibitor Probenecid Attenuates Skeletal Muscle Cellular Energy Crisis and Histopathological Injury in a Rabbit Endotoxemia Model. Inflammation 41, 2030–2040 (2018). https://doi.org/10.1007/s10753-018-0846-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0846-z

Key Words

Navigation