Skip to main content
Log in

Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of NF-κB/MAPKs/PI3K-Akt Signaling Pathways

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hypophyllanthin (HYP) and niranthin (NIR) are major lignans in Phyllanthus spp. and have been shown to possess strong anti-inflammatory activity. In this study, we investigated the anti-inflammatory effects and the underlying molecular mechanisms of HYP and NIR in in vitro cellular model of LPS-induced U937 macrophages. The effects of HYP and NIR on the production of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured by using ELISA, Western blot, and qRT-PCR. The expressions of signaling molecules related to nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3′-kinase-Akt (PI3K-Akt) signaling pathways were examined. The role of NF-κB, MAPKs, and Akt signaling pathways was confirmed by using specific inhibitors (BAY 11-7082, U0126, SB202190, SP600125, and LY294002) mediated suppression of TNF-α and COX-2 production. HYP and NIR significantly inhibited the protein and gene levels of COX-2 as well as the downstream signaling products of PGE2, TNF-α, and IL-1β. HYP and NIR also suppressed the inhibitors of kappa B (IκB), IkB kinases (Ikkα/β), NF-κB phosphorylation, and IκB degradation. HYP suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 while NIR only suppressed JNK and ERK but did not have effect on p38. These results demonstrate that HYP and NIR downregulated COX-2, TNF-α, and IL-1β gene expressions in U937 macrophages by interfering with the activation of NF-κB, MAPKs, and Akt. In conclusion, these lignans have potential to be developed as anti-inflammatory agents targeting the NF-κB, MAPK, and PI3K-Akt pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

ATCC:

American Type Culture Collection

COX-2:

Cyclooxygenase-2

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

IL-1β:

Interleukin-1 beta

iNOS:

Inducible nitric oxide synthase

IκB:

I-kappa B kinase

Ikkα/β:

IkB kinases

JNK:

c-Jun N-terminal kinase

LPS:

Lipopolysaccahride

MAPK:

Mitogen-activated protein kinase

MyD88:

Myeloid differentiation primary response gene 88

NF-κB:

Nuclear factor-kappa B

PAMPs:

Pathogen-associated molecular patterns

PGE2 :

Prostaglandin E2

PMA:

Phorbol 12-myristate 13-acetate

PI3K-Akt:

phosphatidylinositol 3′-kinase-Akt

qRT-PCR:

Quantitative real-time polymerase chain reaction

RPMI:

Roswell Park Memorial Institute

TBS-T:

Tris-buffered saline with Tween 20

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-alpha

References

  1. Lawrence, T., D.A. Willoughby, and D.W. Gilroy. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews. Immunology 10: 787–795.

    Article  CAS  Google Scholar 

  2. Wu, H., G. Zhao, K. Jiang, C. Li, C. Qiu, and G. Deng. 2016. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. Journal of Agricultural and Food Chemistry 31: 6171–6178.

    Article  CAS  Google Scholar 

  3. Tao, J.Y., G.H. Zheng, L. Zhao, J.G. Wu, X.Y. Zhang, S.L. Zhang, Z.J. Huang, F.L. Xiong, and C.M. Li. 2009. Anti-inflammatory effects of ethyl acetate fraction from Melilotus suaveolens Ledeb on LPS-stimulated RAW 264.7 cells. Journal of Ethnopharmacology 1: 97–105.

    Article  CAS  Google Scholar 

  4. Rietschel, E.T., T. Kirikae, F.U. Schade, U. Mamat, G. Schmidt, H. Loppnow, A.J. Ulmer, U. Zahringer, U. Seydel, F. Di Padova, et al. 1994. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB Journal 2: 217–225.

    Article  Google Scholar 

  5. Carralot, J.P., T.K. Kim, B. Lenseigne, A.S. Boese, P. Sommer, A. Genovesio, and P. Brodin. 2009. Automated high-throughput siRNA transfection in raw 264.7 macrophages: A case study for optimization procedure. Journal of Biomolecular Screening 2: 151–160.

    Article  CAS  Google Scholar 

  6. Mueller, M., V. Beck, and A. Jungbauer. 2011. PPARalpha activation by culinary herbs and spices. Planta Medica 5: 497–504.

    Article  CAS  Google Scholar 

  7. Raetz, C.R., and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annual Review of Biochemistry 71: 635–700.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou, W., J. Wang, Z. Li, J. Li, and M. Sang. 2016. MicroRNA-205-5b inhibits HMGB1 expression in LPS-induced sepsis. International Journal of Molecular Medicine 1: 312–318.

    Article  CAS  Google Scholar 

  9. Laveti, D., M. Kumar, R. Hemalatha, R. Sistla, V.G. Naidu, V. Talla, V. Verma, N. Kaur, and R. Nagpal. 2013. Anti-inflammatory treatments for chronic diseases: A review. Inflammation & Allergy Drug Targets 5: 349–361.

    Article  CAS  Google Scholar 

  10. Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: A phylogenetically conserved paradigm in innate immunity. The Journal of Clinical Investigation 1: 13–19.

    Article  Google Scholar 

  11. Haque, M.A., I. Jantan, and H. Harikrishnan. 2018. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. International Immunopharmacology 55: 312–322.

    Article  PubMed  CAS  Google Scholar 

  12. Tabas, I., and C.K. Glass. 2013. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 6116: 166–172.

    Article  CAS  Google Scholar 

  13. Nathan, C., and A. Ding. 2010. Nonresolving inflammation. Cell 6: 871–882.

    Article  CAS  Google Scholar 

  14. Ma, Y., Y. Bao, S. Wang, T. Li, X. Chang, G. Yang, and X. Meng. 2016. Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. Inflammation 4: 1453–1461.

    Article  CAS  Google Scholar 

  15. Lin, L., and K. Hu. 2014. Tissue plasminogen activator and inflammation: From phenotype to signaling mechanisms. American Journal of Clinical and Experimental Immunology 1: 30–36.

    Google Scholar 

  16. Patel, J.R., P. Tripathi, V. Sharma, N.S. Chauhan, and V.K. Dixit. 2011. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. Journal of Ethnopharmacology 2: 286–313.

    Article  CAS  Google Scholar 

  17. Gottlieb, O.R. 1991. The rational search for natural neolignans. Memorias do Instituto Oswaldo Cruz 86: 25–29.

    Article  PubMed  Google Scholar 

  18. Kassuya, C.A., D.F. Leite, L.V. de Melo, V.L. Rehder, and J.B. Calixto. 2005. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Medica 8: 721–726.

    Article  CAS  Google Scholar 

  19. Kiran, P.M., and B.G. Rao. 2013. Evaluation of anti-inflammatory activity of different extracts and isolated lignans of Phyllanthus amarus Schum. & Thonn. Aerial parts. International Journal of Pharma and Bio Sciences 4: 803–808.

    Google Scholar 

  20. Kassuya, C.A.L., A. Silvestre, O. Menezes-de-Lima Jr., D.M. Marotta, V.L.G. Rehder, and J.B. Calixto. 2006. Antiinflammatory and antiallodynic actions of the lignan niranthin isolated from Phyllanthus amarus: Evidence for interaction with platelet activating factor receptor. European Journal of Pharmacology 1–3: 182–188.

    Article  CAS  Google Scholar 

  21. Islam, A., T. Selvan, U. Mazumder, M. Gupta, and S. Ghosal. 2008. Antitumour effect of phyllanthin and hypophyllanthin from Phyllanthus amarus against Ehrlich ascites carcinoma in mice. Pharmacology: 796–807.

  22. Jantan, I., M. Ilangkovan, and H.F. Mohamad. 2014. Correlation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic activity of human neutrophils. BMC Complementary and Alternative Medicine 1: 429.

    Article  Google Scholar 

  23. Yuandani, I.J., M. Ilangkovan, K. Husain, and K.M. Chan. 2016. Inhibitory effects of compounds from Phyllanthus amarus on nitric oxide production, lymphocyte proliferation, and cytokine release from phagocytes. Drug Design, Development and Therapy 10: 1935.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Saponaro, C., A. Cianciulli, R. Calvello, T. Dragone, F. Iacobazzi, and M.A. Panaro. 2012. The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacology and Immunotoxicology 5: 858–865.

    Article  CAS  Google Scholar 

  25. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1–2: 253–262.

    Article  CAS  Google Scholar 

  26. Tham, C.L., C.Y. Liew, K.W. Lam, A.-S. Mohamad, M.K. Kim, Y.K. Cheah, Z.-A. Zakaria, M.-R. Sulaiman, N.H. Lajis, and D.A. Israf. 2010. A synthetic curcuminoid derivative inhibits nitric oxide and proinflammatory cytokine synthesis. European Journal of Pharmacology 1: 247–254.

    Article  CAS  Google Scholar 

  27. Bertholet, S., E. Tzeng, E. Felley-Bosco, and J. Mauel. 1999. Expression of the inducible NO synthase in human monocytic U937 cells allows high output nitric oxide production. Journal of Leukocyte Biology 1: 50–58.

    Article  Google Scholar 

  28. Hoesel, B., and J.A. Schmid. 2013. The complexity of NF-kappaB signaling in inflammation and cancer. Molecular Cancer 12: 86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang, H., Y. Shan, Y. Wu, C. Xu, X. Yu, J. Zhao, J. Yan, and W. Shang. 2017. Berberine suppresses Lps-induced inflammation through modulating Sirt1/nf-κb signaling pathway in Raw264. 7 cells. International Immunopharmacology 52: 93–100.

    Article  PubMed  CAS  Google Scholar 

  30. Biswas, R., and A. Bagchi. 2016. NFkB pathway and inhibition: An overview. Computational Molecular Biology 6.

  31. Zhang, Y.L., and C. Dong. 2005. MAP kinases in immune responses. Cellular & Molecular Immunology 1: 20–27.

    Google Scholar 

  32. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 2: 85–94.

    Article  Google Scholar 

  33. Lee, H.S., D.S. Ryu, G.S. Lee, and D.S. Lee. 2012. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: Suppression of NF-kappaB activation and MAPK signaling. Journal of Ethnopharmacology 2: 271–276.

    Article  Google Scholar 

  34. Yu, H.Y., K.S. Kim, Y.C. Lee, H.I. Moon, and J.H. Lee. 2012. Oleifolioside A, a new active compound, attenuates LPS-stimulated iNOS and COX-2 expression through the downregulation of NF-kappaB and MAPK activities in RAW 264.7 macrophages. Evidence-based Complementary and Alternative Medicine 2012: 637512.

    PubMed  PubMed Central  Google Scholar 

  35. Wang, Z., W. Jiang, Z. Zhang, M. Qian, and B. Du. 2012. Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. Journal of Ethnopharmacology 1: 145–150.

    Article  CAS  Google Scholar 

  36. Kotlyarov, A., A. Neininger, C. Schubert, R. Eckert, C. Birchmeier, H.D. Volk, and M. Gaestel. 1999. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nature Cell Biology 2: 94–97.

    Google Scholar 

  37. Qin, L.H., L. Kong, G.J. Shi, Z.T. Wang, and B.X. Ge. 2006. Andrographolide inhibits the production of TNF-alpha and interleukin-12 in lipopolysaccharide-stimulated macrophages: Role of mitogen-activated protein kinases. Biological & Pharmaceutical Bulletin 2: 220–224.

    Article  Google Scholar 

  38. Laird, M.H., S.H. Rhee, D.J. Perkins, A.E. Medvedev, W. Piao, M.J. Fenton, and S.N. Vogel. 2009. TLR4/MyD88/PI3K interactions regulate TLR4 signaling. Journal of Leukocyte Biology 6: 966–977.

    Article  CAS  Google Scholar 

  39. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nature Reviews. Immunology 2: 135–145.

    Article  CAS  Google Scholar 

  40. Trinchieri, G., and A. Sher. 2007. Cooperation of toll-like receptor signals in innate immune defence. Nature Reviews. Immunology 3: 179–190.

    Article  CAS  Google Scholar 

  41. Chan, E.D., and D.W. Riches. 2001. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. American Journal of Physiology. Cell Physiology 3: C441–C450.

    Article  Google Scholar 

  42. Hattori, Y., S. Hattori, and K. Kasai. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology 2–3: 153–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Agriculture and Agro-based Industries, Malaysia, for the financial support under the NKEA Research Grant Scheme (NRGS) (Grant No. NH1015D075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Jantan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harikrishnan, H., Jantan, I., Haque, M.A. et al. Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of NF-κB/MAPKs/PI3K-Akt Signaling Pathways. Inflammation 41, 984–995 (2018). https://doi.org/10.1007/s10753-018-0752-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0752-4

KEY WORDS

Navigation