Advertisement

Inflammation

, Volume 41, Issue 2, pp 732–740 | Cite as

Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation

  • Yicong Wei
  • Jianxiong Chen
  • Yonghong Hu
  • Wei Lu
  • Xiaoqin Zhang
  • Ruiguo Wang
  • Kedan Chu
ORIGINAL ARTICLE

Abstract

The excessive activation of microglia plays a key role in the pathogenesis of neurodegenerative diseases. The neuroprotective properties of rosmarinic acid have been reported in a variety of disease models both in vitro and in vivo; however, the mechanism underlying its anti-neuroinflammatory activity has not been clearly elucidated. In the present study, we evaluated the anti-inflammatory effects of rosmarinic acid in conditions of neuroinflammatory injury in vitro and in vivo. The results indicated that rosmarinic acid reduced the expression of CD11b, a marker of microglia and macrophages, in the brain and dramatically inhibited the levels of inflammatory cytokines and mediators, such as TNFα, IL-6, IL-1β, COX-2, and iNOS, in a dose-dependent manner both in vitro and in vivo. Consistent with these results, the expression levels of TLR4 and CD14 and the phosphorylation of JNK were also reduced. Further study showed that rosmarinic acid suppresses the activation of the NF-κB pathway and NLRP3 inflammasome, which may contribute to its anti-inflammatory effects. These results suggest that rosmarinic acid significantly reduced TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation, which is involved in anti-neuroinflammation.

Key Words

rosmarinic acid neuroinflammation microglia TLR4 CD14 NF-κB NLRP3 

Notes

Acknowledgements

This work was financially supported through grants from the Department of Technology and Science of Fujian Provincial Government (Grant No. 2016Y0055) and the Collaborative Innovation Center for the Rehabilitation Technology of Fujian University of TCM.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no competing interests.

Supplementary material

10753_2017_728_MOESM1_ESM.jpg (220 kb)
Fig. S1 Rosmarinic acid (RA) does not affect cell viability of BV2 cells. The cytotoxic effect of RA on cultured BV2 cell exposure to LPS. BV2 cells were treated with RA at concentrations of 50, 100, and 200 μM for 24 h in the presence and absence of LPS (100 ng/mL). The cell viability was expressed as the percentage of surviving cells compared with control cells using CKK8 assay. The data are presented as the means ± SEM of three independent experiments (n = 3). (JPEG 220 kb)

References

  1. 1.
    Jin, R., G. Yang, and G. Li. 2010. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. Journal of Leukocyte Biology 87: 779–789.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brown, G.C., and J.J. Neher. 2010. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology 41: 242–247.CrossRefPubMedGoogle Scholar
  3. 3.
    Benakis, C., L. Garcia-Bonilla, C. Iadecola, and J. Anrather. 2014. The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience 8: 461.PubMedGoogle Scholar
  4. 4.
    Lee, Y., S.R. Lee, S.S. Choi, H.G. Yeo, K.T. Chang, and H.J. Lee. 2014. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. BioMed Research International 2014: 297241.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Collins, T., and M.I. Cybulsky. 2001. NF-kappaB: Pivotal mediator or innocent bystander in atherogenesis? Journal of Clinical Investigation 107: 255–264.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Beninson, L.A., and M. Fleshner. 2015. Exosomes in fetal bovine serum dampen primary macrophage IL-1beta response to lipopolysaccharide (LPS) challenge. Immunology Letters 163: 187–192.CrossRefPubMedGoogle Scholar
  7. 7.
    Yang, S.J., G.F. Shao, J.L. Chen, and J. Gong. 2017. The NLRP3 inflammasome: An important driver of neuroinflammation in hemorrhagic stroke. Cellular and Molecular Neurobiology.  https://doi.org/10.1007/s10571-017-0526-9.
  8. 8.
    Wang, Q., P. Lin, P. Li, L. Fen, Q. Ren, X. Xie, and J. Xu. 2017. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sciences. 186: 50–58.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, M., Y. Zhang, J.Y. Xiong, Y. Wang, and S. Lv. 2016. Etomidate mitigates lipopolysaccharide-induced CD14 and TREM-1 expression, NF-kappaB activation, and pro-inflammatory cytokine production in rat macrophages. Inflammation 39: 327–335.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang, H., Y. Zhan, L. Xu, G.Z. Feuerstein, and X. Wang. 2001. Use of suppression subtractive hybridization for differential gene expression in stroke: Discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke 32: 1020–1027.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.CrossRefPubMedGoogle Scholar
  12. 12.
    Beschorner, R., H.J. Schluesener, F. Gozalan, R. Meyermann, and J.M. Schwab. 2002. Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. Journal of Neuroimmunology 126: 107–115.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu, J., Q. Chen, Z. Jian, X. Xiong, L. Shao, T. Jin, X. Zhu, and L. Wang. 2016. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-kappaB signaling pathway. BioMed Research International 2016: 2816056.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Li, X., L. Su, X. Zhang, C. Zhang, L. Wang, Y. Li, Y. Zhang, T. He, X. Zhu, and L. Cui. 2017. Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurological Research 39: 367–373.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghaffari, H., M. Venkataramana, G.B. Jalali, N.S. Chandra, A. Nataraju, N.P. Geetha, and H.S. Prakash. 2014. Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sciences 113: 7–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Du, T., L. Li, N. Song, J. Xie, and H. Jiang. 2010. Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. International Journal of Toxicology 29: 625–633.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang, E.J., S.K. Ku, W. Lee, S. Lee, T. Lee, K.S. Song, and J.S. Bae. 2013. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. Journal of Cellular Physiology 228: 975–982.CrossRefPubMedGoogle Scholar
  18. 18.
    Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, and B. Sepodes. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116: 398–413.CrossRefGoogle Scholar
  19. 19.
    Luan, H., Z. Kan, Y. Xu, C. Lv, and W. Jiang. 2013. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. Journal of Neuroinflammation 10: 28.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wu, F., Q. Zou, X. Ding, D. Shi, X. Zhu, W. Hu, L. Liu, and H. Zhou. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. Journal of Neuroinflammation 13: 23.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, D., J. Shi, S. Lv, W. Xu, J. Li, W. Ge, C. Xiao, D. Geng, and Y. Liu. 2015. Artesunate attenuates lipopolysaccharide-stimulated proinflammatory responses by suppressing TLR4, MyD88 expression, and NF-kappaB activation in microglial cells. Inflammation 38: 1925–1932.CrossRefPubMedGoogle Scholar
  22. 22.
    Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40: 1297–1309.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, C.M., D.S. Lee, W.K. Jung, J.S. Yoo, M.J. Yim, Y.H. Choi, S. Park, S.K. Seo, J.S. Choi, Y.M. Lee, W.S. Park, and I.W. Choi. 2016. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells. International Journal of Molecular Medicine 38: 912–918.CrossRefPubMedGoogle Scholar
  24. 24.
    Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-kappaB, inflammation, and metabolic disease. Cell Metabolism 13: 11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lattke, M., S.N. Reichel, and B. Baumann. 2017. NF-kappaB-mediated astrocyte dysfunction initiates neurodegeneration. Oncotarget 8: 50329–50330.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Moskowitz, M.A., E.H. Lo, and C. Iadecola. 2010. The science of stroke: Mechanisms in search of treatments. Neuron 67: 181–198.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Iuvone, T., D. De Filippis, G. Esposito, A. D’Amico, and A.A. Izzo. 2006. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. Journal of Pharmacology and Experimental Therapeutics 317: 1143–1149.CrossRefPubMedGoogle Scholar
  28. 28.
    Hasanein, P., and A.K. Mahtaj. 2015. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats. Neuroscience Letters 585: 23–27.CrossRefPubMedGoogle Scholar
  29. 29.
    Hasanein, P., R. Seifi, M.R. Hajinezhad, and A. Emamjomeh. 2017. Rosmarinic acid protects against chronic ethanol-induced learning and memory deficits in rats. Nutritional Neuroscience 20: 547–554.CrossRefPubMedGoogle Scholar
  30. 30.
    Zdarilova, A., A. Svobodova, V. Simanek, and J. Ulrichova. 2009. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicology In Vitro 23: 386–392.CrossRefPubMedGoogle Scholar
  31. 31.
    Chu, X., X. Ci, J. He, L. Jiang, M. Wei, Q. Cao, M. Guan, X. Xie, X. Deng, and J. He. 2012. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17: 3586–3598.CrossRefPubMedGoogle Scholar
  32. 32.
    Liang, Z., Y. Xu, X. Wen, H. Nie, T. Hu, X. Yang, X. Chu, J. Yang, X. Deng, and J. He. 2016. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules 21: 769.CrossRefGoogle Scholar
  33. 33.
    Lakhan, S.E., A. Kirchgessner, and M. Hofer. 2009. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine 7: 97.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eliasson, M.J., Z. Huang, R.J. Ferrante, M. Sasamata, M.E. Molliver, S.H. Snyder, and M.A. Moskowitz. 1999. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience 19: 5910–5918.PubMedGoogle Scholar
  35. 35.
    Del, Z.G., I. Ginis, J.M. Hallenbeck, C. Iadecola, X. Wang, and G.Z. Feuerstein. 2000. Inflammation and stroke: Putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathology 10: 95–112.Google Scholar
  36. 36.
    Walton, K.M., R. DiRocco, B.A. Bartlett, E. Koury, V.R. Marcy, B. Jarvis, E.M. Schaefer, and R.V. Bhat. 1998. Activation of p38MAPK in microglia after ischemia. Journal of Neurochemistry 70: 1764–1767.CrossRefPubMedGoogle Scholar
  37. 37.
    Lujia, Y., L. Xin, W. Shiquan, C. Yu, Z. Shuzhuo, and Z. Hong. 2014. Ceftriaxone pretreatment protects rats against cerebral ischemic injury by attenuating microglial activation-induced IL-1beta expression. International Journal of Neuroscience 124: 657–665.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yicong Wei
    • 1
  • Jianxiong Chen
    • 1
  • Yonghong Hu
    • 1
  • Wei Lu
    • 1
  • Xiaoqin Zhang
    • 1
  • Ruiguo Wang
    • 1
  • Kedan Chu
    • 1
  1. 1.Centre of Biomedical Research & DevelopmentFujian University of Traditional Chinese MedicineMinhou ShangjieChina

Personalised recommendations