Advertisement

Inflammation

, Volume 41, Issue 2, pp 614–625 | Cite as

Protein Disulfide Isomerase Silence Inhibits Inflammatory Functions of Macrophages by Suppressing Reactive Oxygen Species and NF-κB Pathway

  • Yinbo Xiao
  • Chaohong Li
  • Minghui Gu
  • Haixing Wang
  • Weishen Chen
  • Guotian Luo
  • Guangpu Yang
  • Ziji Zhang
  • Yangchun Zhang
  • Guoyan Xian
  • Ziqing Li
  • Puyi Sheng
ORIGINAL ARTICLE

Abstract

Macrophages play an essential role in inflammation. Protein disulfide isomerase (PDI) is central to the redox system, which is closely linked with the inflammatory function of macrophages. However, the relationship between PDI and inflammation is still unknown. In this study, we tested the effects of PDI on inflammatory responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). Using CRISPR/Cas9 system, we found that PDI knockout suppressed migration, M1 polarization, and secretion of tumor necrosis factor-α (TNF-α) and interluekin-6 (IL-6). The repression of these inflammatory processes was accompanied by decreased production of reactive oxygen species (ROS). PDI ablation also inactivated the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activated the phosphorylation of NF-κB inhibitor alpha (IκBα). These findings demonstrate that PDI knockout inhibits the inflammatory function of macrophages by decreasing ROS production and inactivating NF-κB pathway.

KEY WORDS

inflammation protein disulfide isomerase (PDI) CRISPR/Cas9 NF-κB reactive oxygen species (ROS) RAW 264.7 

Notes

Acknowledgements

We thank Chan Rong, Xiujian Lan, and Xuanhong Zhang (Department of Medical Science Experimentation Center, Sun Yat-sen University) for technical support.

Funding Information

This work was supported by the National Natural Science Foundation of China (No. 81171710 and No. 81672149) and Natural Science Foundation of Guangdong Province (No. 2015A030311004).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Kapadia, Bhaveen H., Richard A. Berg, Jacqueline A. Daley, Jan Fritz, Anil Bhave, and Michael A. Mont. 2016. Periprosthetic joint infection. The Lancet 387 (10016): 386–394.  https://doi.org/10.1016/s0140-6736(14)61798-0.CrossRefGoogle Scholar
  2. 2.
    Smolen, J.S., D. Aletaha, and I.B. McInnes. 2016. Rheumatoid arthritis. Lancet.  https://doi.org/10.1016/S0140-6736(16)30173-8.
  3. 3.
    Franken, L., M. Schiwon, and C. Kurts. 2016. Macrophages: Sentinels and regulators of the immune system. Cellular Microbiology 18 (4): 475–487.  https://doi.org/10.1111/cmi.12580.CrossRefPubMedGoogle Scholar
  4. 4.
    Soehnlein, O., S. Steffens, A. Hidalgo, and C. Weber. 2017. Neutrophils as protagonists and targets in chronic inflammation. Nature Reviews. Immunology 17 (4): 248–261.  https://doi.org/10.1038/nri.2017.10.CrossRefPubMedGoogle Scholar
  5. 5.
    Mallat, Z. 2014. Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (12): 2509–2519.  https://doi.org/10.1161/ATVBAHA.114.304794.CrossRefPubMedGoogle Scholar
  6. 6.
    Lavin, Y., A. Mortha, A. Rahman, and M. Merad. 2015. Regulation of macrophage development and function in peripheral tissues. Nature Reviews. Immunology 15 (12): 731–744.  https://doi.org/10.1038/nri3920.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weiss, G., and U.E. Schaible. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews 264 (1): 182–203.  https://doi.org/10.1111/imr.12266.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bashir, S., Y. Sharma, A. Elahi, and F. Khan. 2015. Macrophage polarization: the link between inflammation and related diseases. Inflammation Research.  https://doi.org/10.1007/s00011-015-0874-1.
  9. 9.
    Murray, P.J., J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41 (1): 14–20.  https://doi.org/10.1016/j.immuni.2014.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sica, A., M. Erreni, P. Allavena, and C. Porta. 2015. Macrophage polarization in pathology. Cellular and Molecular Life Sciences 72 (21): 4111–4126.  https://doi.org/10.1007/s00018-015-1995-y.CrossRefPubMedGoogle Scholar
  11. 11.
    Antonios, J.K., Z. Yao, C. Li, A.J. Rao, and S.B. Goodman. 2013. Macrophage polarization in response to wear particles in vitro. Cellular & Molecular Immunology 10 (6): 471–482.  https://doi.org/10.1038/cmi.2013.39.CrossRefGoogle Scholar
  12. 12.
    Vasconcelos, D.P., M. Costa, I.F. Amaral, M.A. Barbosa, A.P. Aguas, and J.N. Barbosa. 2015. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials 37: 116–123.  https://doi.org/10.1016/j.biomaterials.2014.10.035.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, Weishen, Ziqing Li, Ying Guo, Yuhuan Zhou, Yangchun Zhang, Guotian Luo, Xing Yang, Chaohong Li, Weiming Liao, and Puyi Sheng. 2015. Wear particles impair antimicrobial activity via suppression of reactive oxygen species generation and ERK1/2 phosphorylation in activated macrophages. Inflammation 38 (3): 1289–1296.  https://doi.org/10.1007/s10753-014-0099-4.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen, Weishen, Ziqing Li, Ying Guo, Yuhuan Zhou, Ziji Zhang, Yangchun Zhang, Guotian Luo, et al. 2015. Wear particles promote reactive oxygen species-mediated inflammation via the nicotinamide adenine dinucleotide phosphate oxidase pathway in macrophages surrounding loosened implants. Cellular Physiology and Biochemistry 35 (5): 1857–1867.  https://doi.org/10.1159/000373996.CrossRefPubMedGoogle Scholar
  15. 15.
    Lei, Y., K. Wang, L. Deng, Y. Chen, E.C. Nice, and C. Huang. 2015. Redox regulation of inflammation: old elements, a new story. Medicinal Research Reviews 35 (2): 306–340.  https://doi.org/10.1002/med.21330.CrossRefPubMedGoogle Scholar
  16. 16.
    Luo, G., Z. Li, Y. Wang, H. Wang, Z. Zhang, W. Chen, Y. Zhang, et al. 2016. Resveratrol protects against titanium particle-induced aseptic loosening through reduction of oxidative stress and inactivation of NF-kappaB. Inflammation.  https://doi.org/10.1007/s10753-016-0306-6.
  17. 17.
    Morgan, M.J., and Z.G. Liu. 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Research 21 (1): 103–115.  https://doi.org/10.1038/cr.2010.178.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou, G., S. Meng, Y. Li, Y.T. Ghebre, and J.P. Cooke. 2016. Optimal ROS signaling is critical for nuclear reprogramming. Cell Reports 15 (5): 919–925.  https://doi.org/10.1016/j.celrep.2016.03.084.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ezraty, B., A. Gennaris, F. Barras, and J.F. Collet. 2017. Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology 15 (7): 385–396.  https://doi.org/10.1038/nrmicro.2017.26.CrossRefPubMedGoogle Scholar
  20. 20.
    Sies, H., C. Berndt, and D.P. Jones. 2017. Oxidative stress. Annual Review of Biochemistry 86: 715–748.  https://doi.org/10.1146/annurev-biochem-061516-045037.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, J., X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong. 2016. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity 2016: 4350965.  https://doi.org/10.1155/2016/4350965.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Blaser, H., C. Dostert, T.W. Mak, and D. Brenner. 2016. TNF and ROS crosstalk in inflammation. Trends in Cell Biology.  https://doi.org/10.1016/j.tcb.2015.12.002.
  23. 23.
    Hayden, M.S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes & Development 18 (18): 2195–2224.  https://doi.org/10.1101/gad.1228704.CrossRefGoogle Scholar
  24. 24.
    Sharif, O., V.N. Bolshakov, S. Raines, P. Newham, and N.D. Perkins. 2007. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunology 8: 1.  https://doi.org/10.1186/1471-2172-8-1.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ping, S., S. Liu, Y. Zhou, Z. Li, Y. Li, K. Liu, A.S. Bardeesi, et al. 2017. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell Death & Disease 8 (5): e2818.  https://doi.org/10.1038/cddis.2017.213.CrossRefGoogle Scholar
  26. 26.
    Wang, L., X. Wang, and C.C. Wang. 2015. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radical Biology and Medicine 83: 305–313.  https://doi.org/10.1016/j.freeradbiomed.2015.02.007.CrossRefPubMedGoogle Scholar
  27. 27.
    Cho, J. 2013. Protein disulfide isomerase in thrombosis and vascular inflammation. Journal of Thrombosis and Haemostasis 11 (12): 2084–2091.  https://doi.org/10.1111/jth.12413.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Benham, A.M. 2012. The protein disulfide isomerase family: key players in health and disease. Antioxidants & Redox Signaling 16 (8): 781–789.  https://doi.org/10.1089/ars.2011.4439.CrossRefGoogle Scholar
  29. 29.
    Yoshioka, J. 2015. Thioredoxin superfamily and its effects on cardiac physiology and pathology. Comprehensive Physiology 5 (2): 513–530.  https://doi.org/10.1002/cphy.c140042.CrossRefPubMedGoogle Scholar
  30. 30.
    Brychtova, V., A. Mohtar, B. Vojtesek, and T.R. Hupp. 2015. Mechanisms of anterior gradient-2 regulation and function in cancer. Seminars in Cancer Biology 33: 16–24.  https://doi.org/10.1016/j.semcancer.2015.04.005.CrossRefPubMedGoogle Scholar
  31. 31.
    Hahm, E., J. Li, K. Kim, S. Huh, S. Rogelj, and J. Cho. 2013. Extracellular protein disulfide isomerase regulates ligand-binding activity of alphaMbeta2 integrin and neutrophil recruitment during vascular inflammation. Blood 121 (19):3789–3800, S3781-3715. doi: https://doi.org/10.1182/blood-2012-11-467985.
  32. 32.
    Higuchi, T., Y. Watanabe, and I. Waga. 2004. Protein disulfide isomerase suppresses the transcriptional activity of NF-kappaB. Biochemical and Biophysical Research Communications 318 (1): 46–52.  https://doi.org/10.1016/j.bbrc.2004.04.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Ran, F.A., P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, and F. Zhang. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8 (11): 2281–2308.  https://doi.org/10.1038/nprot.2013.143.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li, Z., C. Li, Y. Zhou, W. Chen, G. Luo, Z. Zhang, H. Wang, Y. Zhang, D. Xu, and P. Sheng. 2016. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells. American Journal of Physiology. Endocrinology and Metabolism 310 (5): E355–E366.  https://doi.org/10.1152/ajpendo.00309.2015.CrossRefPubMedGoogle Scholar
  35. 35.
    Trujillo, M., L. Folkes, S. Bartesaghi, B. Kalyanaraman, P. Wardman, and R. Radi. 2005. Peroxynitrite-derived carbonate and nitrogen dioxide radicals readily react with lipoic and dihydrolipoic acid. Free Radical Biology & Medicine 39 (2): 279–288.  https://doi.org/10.1016/j.freeradbiomed.2005.03.014.CrossRefGoogle Scholar
  36. 36.
    Wrona, M., and P. Wardman. 2006. Properties of the radical intermediate obtained on oxidation of 2′,7′-dichlorodihydrofluorescein, a probe for oxidative stress. Free Radical Biology & Medicine 41 (4): 657–667.  https://doi.org/10.1016/j.freeradbiomed.2006.05.006.CrossRefGoogle Scholar
  37. 37.
    West, A.P., I.E. Brodsky, C. Rahner, D.K. Woo, H. Erdjument-Bromage, P. Tempst, M.C. Walsh, Y. Choi, G.S. Shadel, and S. Ghosh. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472 (7344): 476–480.  https://doi.org/10.1038/nature09973.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Camejo, D., A. Guzman-Cedeno, and A. Moreno. 2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiology and Biochemistry 103: 10–23.  https://doi.org/10.1016/j.plaphy.2016.02.035.CrossRefPubMedGoogle Scholar
  39. 39.
    Cash, T.P., Y. Pan, and M.C. Simon. 2007. Reactive oxygen species and cellular oxygen sensing. Free Radical Biology & Medicine 43 (9): 1219–1225.  https://doi.org/10.1016/j.freeradbiomed.2007.07.001.CrossRefGoogle Scholar
  40. 40.
    Laurindo, F.R.M., L.A. Pescatore, and D.D. Fernandes. 2012. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine 52 (9): 1954–1969.  https://doi.org/10.1016/j.freeradbiomed.2012.02.037.CrossRefPubMedGoogle Scholar
  41. 41.
    Edman, J.C., L. Ellis, R.W. Blacher, R.A. Roth, and W.J. Rutter. 1985. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317 (6034): 267–270.CrossRefPubMedGoogle Scholar
  42. 42.
    Laboissiere, M.C., S.L. Sturley, and R.T. Raines. 1995. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. The Journal of Biological Chemistry 270 (47): 28006–28009.CrossRefPubMedGoogle Scholar
  43. 43.
    Ryo, A., F. Suizu, Y. Yoshida, K. Perrem, Y.C. Liou, G. Wulf, R. Rottapel, S. Yamaoka, and K.P. Lu. 2003. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Molecular Cell 12 (6): 1413–1426.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yinbo Xiao
    • 1
  • Chaohong Li
    • 2
  • Minghui Gu
    • 1
  • Haixing Wang
    • 1
    • 3
  • Weishen Chen
    • 1
  • Guotian Luo
    • 1
    • 4
  • Guangpu Yang
    • 5
  • Ziji Zhang
    • 1
  • Yangchun Zhang
    • 1
  • Guoyan Xian
    • 1
  • Ziqing Li
    • 1
    • 6
  • Puyi Sheng
    • 1
  1. 1.Department of Joint SurgeryThe First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Histology and Embryology, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  3. 3.Department of Orthopaedics and Traumatology, Faculty of MedicineThe Chinese University of Hong KongShatinChina
  4. 4.Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052Faculté de Médecine Paris 7-Denis DiderotParisFrance
  5. 5.Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
  6. 6.Department of Anatomy and Cell Biology, Penn Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations