Skip to main content
Log in

Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a degenerative joint disease frequently seen in the elderly population. Sinapic acid (SA), a commonly found phenolic acid, has been pharmacologically evaluated for its anti-inflammation effects in various studies. To explore its potential therapeutic role for OA, rat chondrocytes were treated with IL-1β (10 ng/ml) with different concentrations of SA in vitro. Our study revealed that SA could inhibit the IL-1β-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with these findings, the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (Cox)-2 could also be downregulated by SA. Moreover, SA could also suppress the IL-1β-induced expression of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) in chondrocytes. Furthermore, our data found that SA could suppress the IL-1β-induced mitogen-activated protein kinase (MAPK) pathway activation. In general, this paper elucidates that sinapic acid inhibits the IL-1β-induced inflammation via MAPK pathways and may be a good agent for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blaney Davidson, E.N., A.P. van Caam, and P.M. van der Kraan. 2017. Osteoarthritis year in review 2016: biology. Osteoarthritis and Cartilage 25 (2): 175–180. https://doi.org/10.1016/j.joca.2016.09.024.

    Article  CAS  PubMed  Google Scholar 

  2. Glyn-Jones, S., A.J. Palmer, R. Agricola, A.J. Price, T.L. Vincent, H. Weinans, and A.J. Carr. 2015. Osteoarthritis. Lancet 386 (9991): 376–387. https://doi.org/10.1016/S0140-6736(14)60802-3.

    Article  CAS  PubMed  Google Scholar 

  3. Felson, D.T., Y. Zhang, M.T. Hannan, A. Naimark, B.N. Weissman, P. Aliabadi, and D. Levy. 1995. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis and Rheumatism 38 (10): 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  4. Wallace, I.J., S. Worthington, D.T. Felson, R.D. Jurmain, K.T. Wren, H. Maijanen, R.J. Woods, and D.E. Lieberman. 2017. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences of the United States of America 114 (35): 9332–9336. https://doi.org/10.1073/pnas.1703856114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Charlier, E., B. Relic, C. Deroyer, O. Malaise, S. Neuville, J. Collee, M.G. Malaise, and D. De Seny. 2016. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. International Journal of Molecular Sciences 17 (12). https://doi.org/10.3390/ijms17122146.

  6. Goldring, M.B., and M. Otero. 2011. Inflammation in osteoarthritis. Current Opinion in Rheumatology 23 (5): 471–478. https://doi.org/10.1097/BOR.0b013e328349c2b1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, M.D., S. Triantafillou, A. Parker, P.P. Youssef, and M. Coleman. 1997. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. The Journal of Rheumatology 24 (2): 365–371.

    CAS  PubMed  Google Scholar 

  8. Moos, V., S. Fickert, B. Muller, U. Weber, and J. Sieper. 1999. Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. The Journal of Rheumatology 26 (4): 870–879.

    CAS  PubMed  Google Scholar 

  9. Haseeb, A., and T.M. Haqqi. 2013. Immunopathogenesis of osteoarthritis. Clinical Immunology 146 (3): 185–196. https://doi.org/10.1016/j.clim.2012.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, W.P., Z.N. Hu, L.B. Jin, and L.D. Wu. 2017. Licochalcone a inhibits MMPs and ADAMTSs via the NF-kappaB and Wnt/beta-catenin signaling pathways in rat chondrocytes. Cellular Physiology and Biochemistry 43 (3): 937–944. https://doi.org/10.1159/000481645.

    Article  CAS  PubMed  Google Scholar 

  11. Andreasen, M.F., A.K. Landbo, L.P. Christensen, A. Hansen, and A.S. Meyer. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry 49 (8): 4090–4096.

    Article  CAS  PubMed  Google Scholar 

  12. Balaji, C., J. Muthukumaran, and N. Nalini. 2015. Effect of sinapic acid on 1,2 dimethylhydrazine induced aberrant crypt foci, biotransforming bacterial enzymes and circulatory oxidative stress status in experimental rat colon carcinogenesis. Bratislavské Lekárske Listy 116 (9): 560–566.

    CAS  PubMed  Google Scholar 

  13. Silambarasan, T., J. Manivannan, M. Krishna Priya, N. Suganya, S. Chatterjee, and B. Raja. 2014. Sinapic acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS One 9 (12): e115682. https://doi.org/10.1371/journal.pone.0115682.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silambarasan, T., J. Manivannan, B. Raja, and S. Chatterjee. 2016. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid—role of HMG-CoA reductase. European Journal of Pharmacology 777: 113–123. https://doi.org/10.1016/j.ejphar.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  15. Yun, K.J., D.J. Koh, S.H. Kim, S.J. Park, J.H. Ryu, D.G. Kim, J.Y. Lee, and K.T. Lee. 2008. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. Journal of Agricultural and Food Chemistry 56 (21): 10265–10272. https://doi.org/10.1021/jf802095g.

    Article  PubMed  Google Scholar 

  16. Pan, T., D. Wu, N. Cai, R. Chen, X. Shi, B. Li, and J. Pan. 2017. Alpha-mangostin protects rat articular chondrocytes against IL-1beta-induced inflammation and slows the progression of osteoarthritis in a rat model. International Immunopharmacology 52: 34–43. https://doi.org/10.1016/j.intimp.2017.08.010.

    Article  CAS  PubMed  Google Scholar 

  17. Tang, Q., Z. Feng, M. Tong, J. Xu, G. Zheng, L. Shen, P. Shang, Y. Zhang, and H. Liu. 2017. Piceatannol inhibits the IL-1beta-induced inflammatory response in human osteoarthritic chondrocytes and ameliorates osteoarthritis in mice by activating Nrf2. Food & Function. https://doi.org/10.1039/c7fo00822h.

  18. Wojdasiewicz, P., L.A. Poniatowski, and D. Szukiewicz. 2014. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators of Inflammation 2014: 561459. https://doi.org/10.1155/2014/561459.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arasapam, G., M. Scherer, J.C. Cool, B.K. Foster, and C.J. Xian. 2006. Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. Journal of Cellular Biochemistry 99 (2): 450–461. https://doi.org/10.1002/jcb.20905.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, W., Z. Tao, L. Cai, C. Chen, C. Zhang, Q. Wang, X. Ying, W. Hu, and H. Chen. 2017. Chrysin attenuates IL-1beta-induced expression of inflammatory mediators by suppressing NF-kappaB in human osteoarthritis chondrocytes. Inflammation 40 (4): 1143–1154. https://doi.org/10.1007/s10753-017-0558-9.

    Article  CAS  PubMed  Google Scholar 

  21. Lechner, M., P. Lirk, and J. Rieder. 2005. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Seminars in Cancer Biology 15 (4): 277–289. https://doi.org/10.1016/j.semcancer.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  22. Amin, A.R., M. Dave, M. Attur, and S.B. Abramson. 2000. COX-2, NO, and cartilage damage and repair. Current Rheumatology Reports 2 (6): 447–453.

    Article  CAS  PubMed  Google Scholar 

  23. Girotti, A.W. 2016. Modulation of the anti-tumor efficacy of photodynamic therapy by nitric oxide. Cancers (Basel) 8 (10). https://doi.org/10.3390/cancers8100096.

  24. Park, J.Y., M.H. Pillinger, and S.B. Abramson. 2006. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology 119 (3): 229–240. https://doi.org/10.1016/j.clim.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, H., G. Wu, Q. Sun, Y. Dong, and H. Zhao. 2016. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1beta-induced apoptosis via the PI3K/AKT signaling pathway. American Journal of Translational Research 8 (11): 5108–5117.

    PubMed  PubMed Central  Google Scholar 

  26. Okubo, M., and Y. Okada. 2013. Destruction of the articular cartilage in osteoarthritis. Clinical Calcium 23 (12): 1705–1713.

    CAS  PubMed  Google Scholar 

  27. van den Berg, W.B. 2011. Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis and Cartilage 19 (4): 338–341. https://doi.org/10.1016/j.joca.2011.01.022.

    Article  PubMed  Google Scholar 

  28. Selim, K.A., H. Abdelrasoul, M. Aboelmagd, and A.M. Tawila. 2017. The role of the MAPK signaling, topoisomerase and dietary bioactives in controlling cancer incidence. Diseases 5 (2). https://doi.org/10.3390/diseases5020013.

  29. Li, X., Y. Guo, S. Huang, M. He, Q. Liu, W. Chen, M. Liu, D. Xu, and P. He. 2017. Coenzyme Q10 prevents the interleukin-1 beta induced inflammatory response via inhibition of MAPK signaling pathways in rat articular chondrocytes. Drug Development Research. https://doi.org/10.1002/ddr.21412.

  30. Feng, Z., X. Li, J. Lin, W. Zheng, Z. Hu, J. Xuan, W. Ni, and X. Pan. 2017. Oleuropein inhibits the IL-1beta-induced expression of inflammatory mediators by suppressing the activation of NF-kappaB and MAPKs in human osteoarthritis chondrocytes. Food & Function 8 (10): 3737–3744. https://doi.org/10.1039/c7fo00823f.

    Article  CAS  Google Scholar 

Download references

Funding

This research project was supported by the National Natural Science Foundation of China, China, grant no. 81772390 and the Huazhong University of Science and Technology Independent Innovation Research Foundation, China, grant no. 2017KFYXJJ104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo You.

Ethics declarations

All animal experiment procedures used in this study complied with the guidelines of the Animal Care and Use Committee of Tongji Medical College, Wuhan, China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Pan, Q., Mao, Z. et al. Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes. Inflammation 41, 562–568 (2018). https://doi.org/10.1007/s10753-017-0712-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0712-4

KEY WORDS

Navigation