Inflammation

, Volume 41, Issue 2, pp 418–431 | Cite as

Changes in Expression of the Membrane Receptors CD14, MHC-II, SR-A, and TLR4 in Tissue-Specific Monocytes/Macrophages Following Porphyromonas gingivalis–LPS Stimulation

ORIGINAL ARTICLE
  • 189 Downloads

Abstract

The aim of the study was to provide a theoretical foundation for understanding the relationship between periodontal diseases and systemic diseases by examining the inflammatory effect of Porphyromonas gingivalis lipopolysaccharide (LPS) on monocytes/macrophages isolated from tissues distinct from the oral cavity in normal and hyperlipidemic New Zealand white rabbits. Macrophages were isolated from four separate tissues (mononuclear cells from blood, alveolar macrophages, peritoneal macrophages, and Kupffer cells) from both normal and hyperlipidemic New Zealand white rabbits. Cells were either stimulated for 24 h in vitro with P. gingivalis–LPS or Escherichia coli–LPS, or were pre-treated with IL-10 before P. gingivalis–LPS treatment. RNA was isolated and the expression of SR-A, TLR4, CD14, and MHC-II measured by RT-PCR. For MHC-II, the suppression effects of P. gingivalis–LPS were similar to the effects of E. coli–LPS in all macrophages examined. In general, the magnitude of the effects of P. gingivalis–LPS on gene expression was lower than that of E. coli–LPS, and there were differences in the relative membrane receptors between the two, implying that the two LPSs stimulate different responses. IL-10 increased the expression of the defensive receptor SR-A and decreased the expression of CD14, TLR4, and the antigen-presenting molecule MHC-II in all types of macrophages examined, regardless of hyperlipidemic state. These data are consistent with an anti-inflammatory effect of IL-10. P. gingivalis–LPS is an activator of gene expression in macrophages isolated from tissues distinct from the oral cavity.

KEY WORDS

CD14 MHC-II SR-A TLR4 mRNA expression changes Pg–LPS stimulation 

Notes

Acknowledgements

The authors gratefully acknowledge Li and Zheng Heping and their staff (Comparative Medicine Department, Fuzhou General Hospital of Nanjing Military Region of PLA) for the outstanding care given to the animals used in this study. We also acknowledge the staff of the Oral Medical Research Center of Fujian Medical University for their enthusiastic support and help in performing the experiments. We would like to thank Editage (www.editage.com) for English language editing and Publication Support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed Consent

Not applicable.

References

  1. 1.
    Panteghini, M., R. Bonora, and F. Pagani. 1997. Rapid and specific immunoassay for cardiac troponin I in the diagnosis of myocardial damage. International Journal of Clinical and Laboratory Research 27 (1): 60–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Tsukamoto, H., K. Fukudome, S. Takao, N. Tsuneyoshi, and M. Kimoto. 2010. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. International Immunology 22 (4): 271–280.CrossRefPubMedGoogle Scholar
  3. 3.
    Hozumi, H., Y. Adachi, T. Murakami, N.N. Miura, and N. Ohno. 2006. Increment of plasma soluble CD14 level in carrageenan-primed endotoxin shock model mice. Biological and Pharmaceutical Bulletin 29 (5): 1015–1021.CrossRefPubMedGoogle Scholar
  4. 4.
    Akira, S., and K. Takeda. 2004. Toll-like receptor signaling. Nature Reviews Immunology 4: 499–511.CrossRefPubMedGoogle Scholar
  5. 5.
    Underhill, D.M., and A. Ozinsky. 2002. Toll-like receptors: key mediators of microbe detection. Current Opinion in Immunology 14 (1): 103–110.CrossRefPubMedGoogle Scholar
  6. 6.
    Nagai, Y., S. Akashi, M. Nagafuku, M. Ogata, Y. Iwakura, S. Akira, et al. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunology 3: 667–672.CrossRefPubMedGoogle Scholar
  7. 7.
    Cotena, A., S. Gordon, and N. Platt. 2004. The class A macrophage scavenger receptor attenuates CXC chemokine production and the early infiltration of neutrophils in sterile peritonitis. The Journal of Immunology 173 (10): 6427–6432.CrossRefPubMedGoogle Scholar
  8. 8.
    Wenzel, J., J.L. Ouderkirk, M. Krendel, and R. Lang. 2015. Class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release, and antigen presentation via MHC class II. European Journal of Immunology 45 (1): 225–237.CrossRefPubMedGoogle Scholar
  9. 9.
    Holt, S.C., L. Kesavalu, S. Walker, and C.A. Genco. 1999. Virulence factors of Porphyromonas gingivalis. Periodontology 2000 (20): 168–238.CrossRefGoogle Scholar
  10. 10.
    Giacona, M.B., P.N. Papapanou, I.B. Lamster, L.L. Rong, V.D. D'Agati, A.M. Schmidt, et al. 2004. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiology Letters 241 (1): 95–101.CrossRefPubMedGoogle Scholar
  11. 11.
    Sadeghi, K., A. Berger, M. Langgartner, A.R. Prusa, M. Hayde, K. Herkner, et al. 2007. Immaturity of infection control in preterm and term newborns is associated with impaired Toll-like receptor signaling. The Journal of Infectious Diseases 195 (2): 296–302.CrossRefPubMedGoogle Scholar
  12. 12.
    Brodala, N., E.P. Merricks, and D.A. Bellinger. 2005. Porphyromonas gingivalis bacteremia induces coronary and aortic atherosclerosis in normocholesterolemic and hypercholesterolemic pigs. Arteriosclerosis Thrombosis and Vascular Biology 25 (7): 1446–1451.CrossRefGoogle Scholar
  13. 13.
    Zhou, Q., and S. Amar. 2007. Identification of signaling pathways in macrophage exposed to Porphyromonas gingivalis or to its purified cell wall components. Journal of Immunology 179 (11): 7777–7790.CrossRefGoogle Scholar
  14. 14.
    Giacona, M.B., P.N. Papapanou, I.B. Lamster, L.R. Ling, V.D. D’Agati, A.M. Schmidt, et al. 2004. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiology Letters 241 (1): 95–101.CrossRefPubMedGoogle Scholar
  15. 15.
    Gibson, F.C., H. Yumoto, Y. Takahashi, H.H. Chou, and C.A. Genco. 2006. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. Journal of Dental Research 85 (2): 106–121.CrossRefPubMedGoogle Scholar
  16. 16.
    Behrens, E.M. 2008. Macrophage activation syndrome in rheumatic disease: what is the role of the antigen presenting cell? Autoimmunity Reviews 7 (4): 305–308.CrossRefPubMedGoogle Scholar
  17. 17.
    Agarwal, S., N.P. Piesco, L.P. Johns, and A.E. Riccelli. 1995. Differential expression of IL-1β,TNF-α,IL-6 and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. Journal of Dental Research 74 (4): 1057–1065.CrossRefPubMedGoogle Scholar
  18. 18.
    Bainbridge, B.W., and R.P. Darveau. 2001. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontologica Scandinavica 59 (3): 131–138.CrossRefPubMedGoogle Scholar
  19. 19.
    Inaba, H., and A. Amano. 2010. Roles of oral bacteria in cardiovascular diseases from molecular mechanisms to clinical cases: implication of periodontal diseases in development of systemic diseases. Journal of Pharmacological Sciences 113 (2): 103–109.CrossRefPubMedGoogle Scholar
  20. 20.
    Rigante, D., G. Emmi, M. Fastiggi, E. Silvestri, and L. Cantarini. 2015. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders. Clinical Rheumatology 34 (8): 1333–1339.CrossRefPubMedGoogle Scholar
  21. 21.
    Filho, W.S.E.S., R.C.V. Casarin, E.L.N. Junior, H.M. Passos, A.W. Sallum, and R.B. Gonçalves. 2014. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One 9 (10): e109761.CrossRefGoogle Scholar
  22. 22.
    Valledor, A.F., E. Sanchez-Tillo, L. Arpa, J.M. Park, C. Caelles, J. Lloberas, et al. 2008. Selective roles of MAPKs during the macrophage response to IFN-α. The Journal of Immunology 180 (7): 4523–4529.CrossRefPubMedGoogle Scholar
  23. 23.
    Bähr, I.N., P. Tretter, J. Krüger, R.G. Stark, J. Schimkus, T. Unger, et al. 2011. High-dose treatment with telmisartan induces monocytic peroxisome proliferator-activated receptor-γ target genes in patients with the metabolic syndrome. Hypertension 58 (4): 725–732.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou, H., A. Imrich, and L. Kobzik. 2008. Characterization of immortalized marco and sr-ai/ii-deficient murine alveolar macrophage cell lines. Particle & Fibre Toxicology 5 (1): 7.CrossRefGoogle Scholar
  25. 25.
    Takeda, Y., V.N. Bui, K. Iwasaki, T. Kobayashi, H. Ogawa, and K. Imai. 2014. Influence of olive-derived hydroxytyrosol on the toll-like receptor 4-dependent inflammatory response of mouse peritoneal macrophages. Biochemical & Biophysical Research Communications 446 (4): 1225–1230.CrossRefGoogle Scholar
  26. 26.
    Zhang, X., W.P. Yu, L. Gao, K.B. Wei, J.L. Ju, and J.Z. Xu. 2004. Effects of lipopolysaccharides stimulated Kupffer cells on activation of rat hepatic stellate cells. World Journal of Gastroenterology 10 (4): 610–613.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cazalis, J., C. Bodet, G. Gagnon, and D. Grenier. 2008. Doxycycline reduces lipopolysaccharide-induced inflammatory mediator secretion in macrophage and ex vivo human whole blood models. Journal of Periodontology 79 (9): 1762–1768.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang, D., L. Chen, S. Li, Z. Gu, and J. Yan. 2008. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immunity 14 (2): 99–107.CrossRefGoogle Scholar
  29. 29.
    Gordon, S., and A. Plüddemann. 2017. Tissue macrophages: heterogeneity and functions. BMC Biology 15 (1): 53.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Agarwal, S., N.P. Piesco, L.P. Johns, and A.E. Riccelli. 1995. Differential expression of IL-1 beta, TNF-alpha, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. Journal of Dental Research 74 (4): 1057–1065.CrossRefPubMedGoogle Scholar
  31. 31.
    Wick, M.J., C.V. Harding, S.J. Normark, and J.D. Pfeifer. 1994. Parameters that influence the efficiency of processing antigenic epitopes expressed in Salmonella typhimurium. Infection & Immunity 62 (10): 4542–4548.Google Scholar
  32. 32.
    Tobian, A.A., N.S. Potter, L. Ramachandra, R.K. Pai, M. Convery, W.H. Boom, et al. 2003. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. Journal of Immunology 171 (3): 1413–1422.CrossRefGoogle Scholar
  33. 33.
    Scannapieco, F.A., and A.J.M. Mylotte. 1996. Relationships between periodontal disease and bacterial pneumonia. Journal of Periodontology 67 (10 Suppl): 1114–1122.CrossRefGoogle Scholar
  34. 34.
    Scannapieco, F.A., and M.P. Rethman. 2003. The relationship between periodontal diseases and respiratory diseases. Dentistry Today 22 (8): 79–83.PubMedGoogle Scholar
  35. 35.
    Muthu, J., S. Muthanandam, and J. Mahendra. 2016. Mouth the mirror of lungs: where does the connection lie? Frontiers of Medicine 10 (4): 405–409.CrossRefPubMedGoogle Scholar
  36. 36.
    Brass, D.M., J.W. Hollingsworth, E. Mcelvania-Tekippe, S. Garantziotis, I. Hossain, and D.A. Schwartz. 2007. CD14 is an essential mediator of LPS-induced airway disease. American Journal of Physiology Lung Cellular & Molecular Physiology 293 (1): 77–83.CrossRefGoogle Scholar
  37. 37.
    Dagvadorj, J., K. Shimada, S. Chen, H.D. Jones, G. Tumurkhuu, W. Zhang, et al. 2015. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2x7 receptor leading to interleukin-1α release. Immunity 42 (4): 640–653.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maris, N.A., M.C. Dessing, A.F. de Vos, P. Bresser, V.D.Z. Js, H.M. Jansen, et al. 2006. Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. European Respiratory Journal 28 (3): 622–626.CrossRefPubMedGoogle Scholar
  39. 39.
    Saito, T., T. Yamamoto, T. Kazawa, H. Gejyo, and M. Naito. 2005. Expression of toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse. Cell & Tissue Research 321 (1): 75–88.CrossRefGoogle Scholar
  40. 40.
    Ganesan, S., A.N. Faris, A.T. Comstock, J. Sonstein, J.L. Curtis, and U.S. Sajjan. 2012. Elastase/LPS-exposed mice exhibit impaired innate immune responses to bacterial challenge: role of scavenger receptor A. American Journal of Pathology 180 (1): 61–72.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yamamoto, T., Y. Ebe, G. Hasegawa, M. Kataoka, S. Yamamoto, and M. Naito. 1999. Expression of scavenger receptor class A and CD14 in lipopolysaccharide-induced lung injury. Pathology International 49 (11): 983–992.CrossRefPubMedGoogle Scholar
  42. 42.
    Czerkies, M., K. Borzęcka, M.I. Zdioruk, A. Płóciennikowska, A. Sobota, and K. Kwiatkowska. 2013. An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology 218 (10): 1217–1226.CrossRefPubMedGoogle Scholar
  43. 43.
    Fitzgerald, M.L., K.J. Moore, M.W. Freeman, and G.L. Reed. 2000. Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages: a divergent response relative to human THP-1 monocyte/macrophages. Journal of Immunology 164 (5): 2692–2700.CrossRefGoogle Scholar
  44. 44.
    Tomofuji, T., D. Ekuni, R. Yamanaka, H. Kusano, T. Azuma, T. Sanbe, et al. 2007. Chronic administration of lipopolysaccharide and proteases induces periodontal inflammation and hepatic steatosis in rats. Journal of Periodontology 78 (10): 1999–2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Tomofuji, T., D. Ekuni, T. Sanbe, T. Azuma, N. Tamaki, K. Irie, et al. 2009. Effects of improvement in periodontal inflammation by toothbrushing on serum lipopolysaccharide concentration and liver injury in rats. Acta Odontologica Scandinavica 67 (4): 200–205.CrossRefPubMedGoogle Scholar
  46. 46.
    Yamamoto, T., T. Tomofuji, N. Tamaki, D. Ekuni, T. Azuma, and T. Sanbe. 2010. Effects of topical application of lipopolysaccharide and proteases on hepatic injury induced by high-cholesterol diet in rats. Journal of Periodontal Research 45 (1): 129–135.CrossRefPubMedGoogle Scholar
  47. 47.
    Peng, Y., Z.J. Liu, J.P. Gong, H.Z. Liu, L. Gan, and S.B. Li. 2005. Expression of CD14 and Toll-like receptor 4 on Kupffer cells and its role in ischemia-reperfusion injury on rat liver graft. Zhonghua Wai Ke Za Zhi 43 (5): 274–276.PubMedGoogle Scholar
  48. 48.
    Choda, Y., Y. Morimoto, H. Miyaso, S. Shinoura, S. Saito, T. Yagi, et al. 2004. Failure of the gut barrier system enhances liver injury in rats: protection of hepatocytes by gut-derived hepatocyte growth factor. European Journal of Gastroenterology & Hepatology 6 (10): 1017–1025.CrossRefGoogle Scholar
  49. 49.
    Imajo, K., K. Fujita, M. Yoneda, Y. Nozaki, Y. Ogawa, Y. Shinohara, et al. 2012. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metabolism 16 (1): 44–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Ono, K., C. Nishitani, H. Mitsuzawa, T. Shimizu, H. Sano, H. Suzuki, et al. 2006. Mannose-binding lectin augments the uptake of lipid A, Staphylococcus aureus, and Escherichia coli by Kupffer cells through increased cell surface expression of scavenger receptor A. Journal of Immunology 177 (8): 5517–5523.CrossRefGoogle Scholar
  51. 51.
    Van, O.M., E.S. van Amersfoort, T.J. van Berkel, and J. Kuiper. 2001. Scavenger receptor-like receptors for the binding of lipopolysaccharide and lipoteichoic acid to liver endothelial and Kupffer cells. Journal of Endotoxin Research 7 (5): 381–384.CrossRefGoogle Scholar
  52. 52.
    Jiang, Q., S. Akashi, K. Miyake, and H.R. Petty. 2000. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. Journal of Immunology 165 (7): 3541–3544.CrossRefGoogle Scholar
  53. 53.
    Mirlashari, M.R., and T. Lyberg. 2003. Expression and involvement of toll-like receptors (TLR)2, TLR4, and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides from Neisseria meningitidis. Medical Science Monitor International Medical Journal of Experimental & Clinical Research 9 (8): BR316–BR324.Google Scholar
  54. 54.
    Zhou, J., G. Tai, H. Liu, J. Ge, Y. Feng, F. Chen, et al. 2009. Activin A down-regulates the phagocytosis of lipopolysaccharide-activated mouse peritoneal macrophages in vitro, and in vivo. Cellular Immunology 255 (1–2): 69–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Affiliated Stomatological Hospital of Fujian Medical UniversityFuzhouChina
  2. 2.Nanjing Stomatological HospitalMedical School of Nanjing UniversityNanjingChina

Personalised recommendations