Advertisement

Inflammation

, Volume 40, Issue 1, pp 195–204 | Cite as

The Spatio-Temporal Expression Profiles of CD4 + T Cell Differentiation and Function-Related Genes During EAE Pathogenesis

  • Yingying Cai
  • Hu Shen
  • Chaoyan Qin
  • Jinfeng Zhou
  • Weiming Lai
  • Juping PanEmail author
  • Changsheng DuEmail author
ORIGINAL ARTICLE

Abstract

Multiple sclerosis is a CD4+ T cell-mediated autoimmune disease of the central nervous system. The unbalance of the cytokines and transcription factors critical for CD4+ T cell differentiation and function is probably the main reason that causes MS. We detected the mRNA expression changes of key cytokines and transcription factors which are critical for Th1, Th2, Th17, and Treg cell differentiation and function in different tissues during EAE pathogenesis. We fund that each gene not only has its own featured expression changes, but also has interaction with one another, which composes a network of immunity. Understanding the roles of key cytokines and transcription factors in these processes will help to understand disease pathogenesis and supply indications for disease therapy.

KEY WORDS

cytokine experimental autoimmune encephalomyelitis multiple sclerosis transcription factor 

Notes

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (2014CB541903, 2012CB910404), the National Natural Science Foundation of China (31171348, 31371414), the Shanghai Municipal Education Commission (14zz042), the State Key Laboratory of Drug Research (SIMM1302KF-09), and the Fundamental Research Funds for the Central Universities.

Supplementary material

10753_2016_469_MOESM1_ESM.docx (119 kb)
Fig. S1 (DOCX 119 kb)

References

  1. 1.
    Legroux, L., and N. Arbour. 2015. Multiple sclerosis and T lymphocytes: An entangled story. Journal of NeuroImmune Pharmacology. doi: 10.1007/s11481-11015-19614-11480.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lovett-Racke, A.E., Y. Yang, and M.K. Racke. 2011. Th1 versus Th17: Are T cell cytokines relevant in multiple sclerosis? Biochimica et Biophysica Acta 1812: 246–251.CrossRefPubMedGoogle Scholar
  3. 3.
    Kopf, M., G. Le Gros, M. Bachmann, M.C. Lamers, H. Bluethmann, and G. Kohler. 1993. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362: 245–248.CrossRefPubMedGoogle Scholar
  4. 4.
    Kurata, H., H.J. Lee, A. O’Garra, and N. Arai. 1999. Ectopic expression of activated Stat6 induces the expression of Th2-specific cytokines and transcription factors in developing Th1 cells. Immunity 11: 677–688.CrossRefPubMedGoogle Scholar
  5. 5.
    Gorelik, L., S. Constant, and R.A. Flavell. 2002. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. Journal of Experimental Medicine 195: 1499–1505.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Veldhoen, M., R.J. Hocking, C.J. Atkins, R.M. Locksley, and B. Stockinger. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189.CrossRefPubMedGoogle Scholar
  7. 7.
    Ghilardi, N., and W. Ouyang. 2007. Targeting the development and effector functions of TH17 cells. Seminars in Immunology 19: 383–393.CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy, J., Z. Illes, X. Zhang, J. Encinas, J. Pyrdol, L. Nicholson, R.A. Sobel, K.W. Wucherpfennig, and V.K. Kuchroo. 2004. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America 101: 15434–15439.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Horwitz, D.A., S.G. Zheng, and J.D. Gray. 2008. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends in Immunology 29: 429–435.CrossRefPubMedGoogle Scholar
  10. 10.
    Yao, Y., W. Li, M.H. Kaplan, and C.H. Chang. 2005. Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. Journal of Experimental Medicine 201: 1899–1903.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qian, X., L. Gu, H. Ning, Y. Zhang, E.C. Hsueh, M. Fu, X. Hu, L. Wei, D.F. Hoft, and J. Liu. 2013. Increased Th17 cells in the tumor microenvironment is mediated by IL-23 via tumor-secreted prostaglandin E2. Journal of Immunology 190: 5894–5902.CrossRefGoogle Scholar
  12. 12.
    Wang, L., C. Du, J. Lv, W. Wei, Y. Cui, and X. Xie. 2011. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. Journal of Immunology 187: 2336–2345.CrossRefGoogle Scholar
  13. 13.
    Krakowski, M., and T. Owens. 1996. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. European Journal of Immunology 26: 1641–1646.CrossRefPubMedGoogle Scholar
  14. 14.
    Smits, H.H., J.G. van Rietschoten, C.M. Hilkens, R. Sayilir, F. Stiekema, M.L. Kapsenberg, and E.A. Wierenga. 2001. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. European Journal of Immunology 31: 1055–1065.CrossRefPubMedGoogle Scholar
  15. 15.
    Leonard, J.P., K.E. Waldburger, and S.J. Goldman. 1995. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. Journal of Experimental Medicine 181: 381–386.CrossRefPubMedGoogle Scholar
  16. 16.
    Schiering, C., T. Krausgruber, A. Chomka, A. Frohlich, K. Adelmann, E.A. Wohlfert, J. Pott, T. Griseri, J. Bollrath, A.N. Hegazy, O.J. Harrison, B.M. Owens, M. Lohning, Y. Belkaid, P.G. Fallon, and F. Powrie. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513: 564–568.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kassiotis, G., and G. Kollias. 2001. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. Journal of Experimental Medicine 193: 427–434.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wohlfert, E.A., J.R. Grainger, N. Bouladoux, J.E. Konkel, G. Oldenhove, C.H. Ribeiro, J.A. Hall, R. Yagi, S. Naik, R. Bhairavabhotla, W.E. Paul, R. Bosselut, G. Wei, K. Zhao, M. Oukka, J. Zhu, and Y. Belkaid. 2011. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. Journal of Clinical Investigation 121: 4503–4515.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ponomarev, E.D., K. Maresz, Y. Tan, and B.N. Dittel. 2007. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. Journal of Neuroscience 27: 10714–10721.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou, L., J.E. Lopes, M.M. Chong, I.I. Ivanov, R. Min, G.D. Victora, Y. Shen, J. Du, Y.P. Rubtsov, A.Y. Rudensky, S.F. Ziegler, and D.R. Littman. 2008. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453: 236–240.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dhib-Jalbut, S., H. Jiang, and G.J. Williams. 1996. The effect of interferon beta-1b on lymphocyte-endothelial cell adhesion. Journal of Neuroimmunology 71: 215–222.CrossRefPubMedGoogle Scholar
  22. 22.
    Maimone, D., G.C. Guazzi, and P. Annunziata. 1997. IL-6 detection in multiple sclerosis brain. Journal of Neurological Sciences 146: 59–65.CrossRefGoogle Scholar
  23. 23.
    McGeachy, M.J., K.S. Bak-Jensen, Y. Chen, C.M. Tato, W. Blumenschein, T. McClanahan, and D.J. Cua. 2007. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nature Immunology 8: 1390–1397.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou, L., I.I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D.E. Levy, W.J. Leonard, and D.R. Littman. 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology 8: 967–974.CrossRefPubMedGoogle Scholar
  25. 25.
    Kebir, H., K. Kreymborg, I. Ifergan, A. Dodelet-Devillers, R. Cayrol, M. Bernard, F. Giuliani, N. Arbour, B. Becher, and A. Prat. 2007. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nature Medicine 13: 1173–1175.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cua, D.J., J. Sherlock, Y. Chen, C.A. Murphy, B. Joyce, B. Seymour, L. Lucian, W. To, S. Kwan, T. Churakova, S. Zurawski, M. Wiekowski, S.A. Lira, D. Gorman, R.A. Kastelein, and J.D. Sedgwick. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421: 744–748.CrossRefPubMedGoogle Scholar
  27. 27.
    McGeachy, M.J., Y. Chen, C.M. Tato, A. Laurence, B. Joyce-Shaikh, W.M. Blumenschein, T.K. McClanahan, J.J. O’Shea, and D.J. Cua. 2009. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunology 10: 314–324.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4: 330–336.CrossRefPubMedGoogle Scholar
  29. 29.
    Marie, J.C., J.J. Letterio, M. Gavin, and A.Y. Rudensky. 2005. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine 201: 1061–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rollnik, J.D., E. Sindern, C. Schweppe, and J.P. Malin. 1997. Biologically active TGF-beta 1 is increased in cerebrospinal fluid while it is reduced in serum in multiple sclerosis patients. Acta Neurologica Scandinavica 96: 101–105.CrossRefPubMedGoogle Scholar
  31. 31.
    Lalive, P.H., R. Paglinawan, G. Biollaz, E.A. Kappos, D.P. Leone, U. Malipiero, J.B. Relvas, M. Moransard, T. Suter, and A. Fontana. 2005. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. European Journal of Immunology 35: 727–737.CrossRefPubMedGoogle Scholar
  32. 32.
    Chaudhry, A., R.M. Samstein, P. Treuting, Y. Liang, M.C. Pils, J.M. Heinrich, R.S. Jack, F.T. Wunderlich, J.C. Bruning, W. Muller, and A.Y. Rudensky. 2011. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34: 566–578.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bettelli, E., M.P. Das, E.D. Howard, H.L. Weiner, R.A. Sobel, and V.K. Kuchroo. 1998. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. Journal of Immunology 161: 3299–3306.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Research Center for Translational Medicine at East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
  2. 2.Tongji Hospital of Tongji University BranchTongji UniversityShanghaiChina
  3. 3.State key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina

Personalised recommendations