Skip to main content

Advertisement

Log in

Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans–Induced Inflammation in Mouse Lungs

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1β and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1β mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1β production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Winterbourn, C.C., A.J. Kettle, and M.B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annual Review of Biochemistry 85: 765–792.

    Article  CAS  PubMed  Google Scholar 

  2. Babior, B.M. 1999. NADPH oxidase: an update. Blood 93(5): 1464–1476.

    CAS  PubMed  Google Scholar 

  3. Nunes, P., N. Demaurex, and M.C. Dinauer. 2013. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14(11): 1118–1131.

    CAS  PubMed  Google Scholar 

  4. Klebanoff, S.J., A.J. Kettle, H. Rosen, C.C. Winterbourn, and W.M. Nauseef. 2013. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of Leukocyte Biology 93(2): 185–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marciano, B.E., C. Spalding, A. Fitzgerald, D. Mann, T. Brown, S. Osgood, L. Yockey, D.N. Darnell, L. Barnhart, J. Daub, L. Boris, A.P. Rump, V.L. Anderson, C. Haney, D.B. Kuhns, S.D. Rosenzweig, C. Kelly, A. Zelazny, T. Mason, S.S. DeRavin, E. Kang, J.I. Gallin, H.L. Malech, K.N. Olivier, G. Uzel, A.F. Freeman, T. Heller, C.S. Zerbe, and S.M. Holland. 2014. Common severe infections in chronic granulomatous disease. Clinical Infectious Diseases 60(8): 1176–1183.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roos, D., and M. de Boer. 2013. Molecular diagnosis of chronic granulomatous disease. Clinical and Experimental Immunology 175(2): 139–149.

    Article  Google Scholar 

  7. Winkelstein, J.A., M.C. Marino, R.B. Johnston Jr., J. Boyle, J. Curnutte, J.I. Gallin, H.L. Malech, S.M. Holland, H. Ochs, P. Quie, R.H. Buckley, C.B. Foster, S.J. Chanock, and H. Dickler. 2000. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3): 155–169.

    Article  CAS  Google Scholar 

  8. Song, E., G.B. Jaishankar, H. Saleh, W. Jithpratuck, R. Sahni, and G. Krishnaswamy. 2011. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clinical and Molecular Allergy 9(1): 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van den Berg, J.M., E. van Koppen, A. Ahlin, B.H. Belohradsky, E. Bernatowska, L. Corbeel, T. Espanol, A. Fischer, M. Kurenko-Deptuch, R. Mouy, T. Petropoulou, J. Roesler, R. Seger, M.J. Stasia, N.H. Valerius, R.S. Weening, B. Wolach, D. Roos, and T.W. Kuijpers. 2009. Chronic granulomatous disease: the European experience. PLoS One 4(4): e5234.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morgenstern, D.E., M.A. Gifford, L.L. Li, C.M. Doerschuk, and M.C. Dinauer. 1997. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. The Journal of Experimental Medicine 185(2): 207–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pollock, J.D., D.A. Williams, M.A. Gifford, L.L. Li, X. Du, J. Fisherman, S.H. Orkin, C.M. Doerschuk, and M.C. Dinauer. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nature Genetics 9(2): 202–209.

    Article  CAS  PubMed  Google Scholar 

  12. Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Medical Mycology 40(6): 557–563.

    Article  CAS  PubMed  Google Scholar 

  13. Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. The Journal of Infectious Diseases 185(12): 1833–1837.

    Article  CAS  PubMed  Google Scholar 

  14. Levine, S., V.V. Smith, M. Malone, and N.J. Sebire. 2005. Histopathological features of chronic granulomatous disease (CGD) in childhood. Histopathology 47(5): 508–516.

    Article  CAS  PubMed  Google Scholar 

  15. Schappi, M.G., V. Jaquet, D.C. Belli, and K.H. Krause. 2008. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Seminars in Immunopathology 30(3): 255–271.

    Article  PubMed  Google Scholar 

  16. Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine 53(1): 72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harris, B.H., and E.T. Boles Jr. 1973. Intestinal lesions in chronic granulomatous disease of childhood. Journal of Pediatric Surgery 8(6): 955–956.

    Article  CAS  PubMed  Google Scholar 

  18. Chin, T.W., E.R. Stiehm, J. Falloon, and J.I. Gallin. 1987. Corticosteroids in treatment of obstructive lesions of chronic granulomatous disease. Journal of Pediatrics 111(3): 349–352.

    Article  CAS  PubMed  Google Scholar 

  19. Segal, B.H., W. Han, J.J. Bushey, M. Joo, Z. Bhatti, J. Feminella, C.G. Dennis, R.R. Vethanayagam, F.E. Yull, M. Capitano, P.K. Wallace, H. Minderman, J.W. Christman, M.B. Sporn, J. Chan, D.C. Vinh, S.M. Holland, L.R. Romani, S.L. Gaffen, M.L. Freeman, and T.S. Blackwell. 2010. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5(3): e9631.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Whitmore, L.C., K.L. Goss, E.A. Newell, B.M. Hilkin, J.S. Hook, and J.G. Moreland. 2014. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. American Journal of Physiology. Lung Cellular and Molecular Physiology 307(1): L71–L82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, W.J., H. Wei, and B. Frei. 2009. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radical Biology and Medicine 46(6): 791–798.

    Article  CAS  PubMed  Google Scholar 

  22. Petersen, J.E., T.S. Hiran, W.S. Goebel, C. Johnson, R.C. Murphy, F.H. Azmi, A.F. Hood, J.B. Travers, and M.C. Dinauer. 2002. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. Journal of Investigative Dermatology 118(3): 424–429.

    Article  CAS  PubMed  Google Scholar 

  23. Shepherd, M.G., and P.A. Sullivan. 1976. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture. Journal of General Microbiology 93(2): 361–370.

    Article  CAS  PubMed  Google Scholar 

  24. Hida, S., N.N. Miura, Y. Adachi, and N. Ohno. 2005. Effect of Candida albicans cell wall glucan as adjuvant for induction of autoimmune arthritis in mice. Journal of Autoimmunity 25(2): 93–101.

    Article  CAS  PubMed  Google Scholar 

  25. Homme, M., N. Tateno, N. Miura, N. Ohno, and Y. Aratani. 2013. Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans. Inflammation Research 62(11): 981–990.

    Article  CAS  PubMed  Google Scholar 

  26. Fleming, T.J., M.L. Fleming, and T.R. Malek. 1993. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. The Journal of Immunology 151(5): 2399–2408.

    CAS  PubMed  Google Scholar 

  27. Hazuda, D.J., J. Strickler, F. Kueppers, P.L. Simon, and P.R. Young. 1990. Processing of precursor interleukin 1 beta and inflammatory disease. The Journal of Biological Chemistry 265(11): 6318–6322.

    CAS  PubMed  Google Scholar 

  28. Franchi, L., T. Eigenbrod, R. Munoz-Planillo, and G. Nunez. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology 10(3): 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grimm, M.J., R.R. Vethanayagam, N.G. Almyroudis, C.G. Dennis, A.N. Khan, A.C. D’Auria, K.L. Singel, B.A. Davidson, P.R. Knight, T.S. Blackwell, T.M. Hohl, M.K. Mansour, J.M. Vyas, M. Rohm, C.F. Urban, T. Kelkka, R. Holmdahl, and B.H. Segal. 2013. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. The Journal of Immunology 190(8): 4175–4184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14(6): 523–535.

    Article  CAS  Google Scholar 

  31. Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology 27: 519–550.

    Article  CAS  PubMed  Google Scholar 

  32. Pahl, H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49): 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  33. Lord, P.C., L.M. Wilmoth, S.B. Mizel, and C.E. McCall. 1991. Expression of interleukin-1 alpha and beta genes by human blood polymorphonuclear leukocytes. Journal of Clinical Investigation 87(4): 1312–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marucha, P.T., R.A. Zeff, and D.L. Kreutzer. 1990. Cytokine regulation of IL-1 beta gene expression in the human polymorphonuclear leukocyte. The Journal of Immunology 145(9): 2932–2937.

    CAS  PubMed  Google Scholar 

  35. McDonald, P.P., A. Bald, and M.A. Cassatella. 1997. Activation of the NF-kappaB pathway by inflammatory stimuli in human neutrophils. Blood 89(9): 3421–3433.

    CAS  PubMed  Google Scholar 

  36. Chen, B.C., Y.S. Chang, J.C. Kang, M.J. Hsu, J.R. Sheu, T.L. Chen, C.M. Teng, and C.H. Lin. 2004. Peptidoglycan induces nuclear factor-kappaB activation and cyclooxygenase-2 expression via Ras, Raf-1, and ERK in RAW 264.7 macrophages. The Journal of Biological Chemistry 279(20): 20889–20897.

    Article  CAS  PubMed  Google Scholar 

  37. Guha, M., M.A. O’Connell, R. Pawlinski, A. Hollis, P. McGovern, S.F. Yan, D. Stern, and N. Mackman. 2001. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5): 1429–1439.

    Article  CAS  PubMed  Google Scholar 

  38. Saccani, S., S. Pantano, and G. Natoli. 2002. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nature Immunology 3(1): 69–75.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy, L.O., and J. Blenis. 2006. MAPK signal specificity: the right place at the right time. Trends in Biochemical Sciences 31(5): 268–275.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, J.Y., Y. Liu, and G.S. Wu. 2006. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Research 66(9): 4888–4894.

    Article  CAS  PubMed  Google Scholar 

  41. Gross, O., H. Poeck, M. Bscheider, C. Dostert, N. Hannesschlager, S. Endres, G. Hartmann, A. Tardivel, E. Schweighoffer, V. Tybulewicz, A. Mocsai, J. Tschopp, and J. Ruland. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245): 433–436.

    Article  CAS  PubMed  Google Scholar 

  42. van de Veerdonk, F.L., L.A. Joosten, P.J. Shaw, S.P. Smeekens, R.K. Malireddi, J.W. van der Meer, B.J. Kullberg, M.G. Netea, and T.D. Kanneganti. 2011. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. European Journal of Immunology 41(8): 2260–2268.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guarda, G., M. Braun, F. Staehli, A. Tardivel, C. Mattmann, I. Forster, M. Farlik, T. Decker, R.A. Du Pasquier, P. Romero, and J. Tschopp. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34(2): 213–223.

    Article  CAS  PubMed  Google Scholar 

  44. Hise, A.G., J. Tomalka, S. Ganesan, K. Patel, B.A. Hall, G.D. Brown, and K.A. Fitzgerald. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host & Microbe 5(5): 487–497.

    Article  CAS  Google Scholar 

  45. van de Veerdonk, F.L., L.A. Joosten, I. Devesa, H.M. Mora-Montes, T.D. Kanneganti, C.A. Dinarello, J.W. van der Meer, N.A. Gow, B.J. Kullberg, and M.G. Netea. 2009. Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. The Journal of Infectious Diseases 199(7): 1087–1096.

    Article  PubMed  Google Scholar 

  46. van de Veerdonk, F.L., S.P. Smeekens, L.A. Joosten, B.J. Kullberg, C.A. Dinarello, J.W. van der Meer, and M.G. Netea. 2010. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proceedings of the National Academy of Sciences of the United States of America 107(7): 3030–3033.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rubartelli, A., F. Cozzolino, M. Talio, and R. Sitia. 1990. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. The EMBO Journal 9(5): 1503–1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575): 660–665.

    Article  CAS  PubMed  Google Scholar 

  49. Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575): 666–671.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Mary C. Dinauer, Indiana University School of Medicine, for kindly providing the CGD mice. We thank Yuri Nakao, Minami Sugimura, and Saori Takatori for technical support. This work was supported in part by JSPS KAKENHI grant number 26450446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Aratani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, D., Fujimoto, K., Hirose, R. et al. Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans–Induced Inflammation in Mouse Lungs. Inflammation 40, 123–135 (2017). https://doi.org/10.1007/s10753-016-0461-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0461-9

KEY WORDS

Navigation