Skip to main content

Advertisement

Log in

Heme-Exposed Pooled Therapeutic IgG Improves Endotoxemia Survival

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Antibody repertoires of healthy humans and animals contain a fraction of antibodies able to acquire additional polyspecificity following exposure to several biologically relevant redox molecules (free heme, reactive oxygen species, ferrous ions, HOCl, etc.). The physiological role of these “hidden” polyspecific antibodies is poorly understood. Similar to inherently polyspecific antibodies, those with induced polyspecificicty may also have immunoregulatory properties. We have previously shown that a pooled human IgG preparation, modified by the exposure to ferrous ions, acquires the ability to significantly improve survival of animals with polymicrobial sepsis or aseptic systemic inflammation induced by bacterial lipopolysaccharide or zymosan administration. In the present study, we have analyzed the effects of administration of heme-exposed pooled human IgG in the same models of sepsis and aseptic systemic inflammation. The administration of a single dose of heme-exposed pooled IgG has resulted in a significant increase in the survival of mice with endotoxinemia, but not in those with polymicrobial sepsis and zymosan-induced severe generalized inflammation. Finally, we have provided evidence that the anti-inflammatory effect of heme-exposed IgG can be explained by scavenging of pro-inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Notkins, A. 2004. Polyreactivity of antibody molecules. Trends in Immunology 25(4): 174–9.

    Article  CAS  PubMed  Google Scholar 

  2. Dimitrov, J.D., C. Planchais, L.T. Roumenina, T.L. Vassilev, S.V. Kaveri, and S. Lacroix-Desmazes. 2013. Antibody polyreactivity in health and disease: statu variabilis. Journal of Immunology 191(3): 993–9.

    Article  CAS  Google Scholar 

  3. Zhou, Z.H., A.G. Tzioufas, and A.L. Notkins. 2007. Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells. Journal of Autoimmunity 29(4): 219–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, Z.H., Y. Zhang, Y.F. Hu, L.M. Wahl, J.O. Cisar, and A.L. Notkins. 2007. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host & Microbe 1(1): 51–61.

    Article  CAS  Google Scholar 

  5. Dimitrov, J.D., N.D. Ivanovska, S. Lacroix-Desmazes, V.R. Doltchinkova, S.V. Kaveri, and T.L. Vassilev. 2006. Ferrous ions and reactive oxygen species increase antigen-binding and anti-inflammatory activities of immunoglobulin G. Journal of Biological Chemistry 281(1): 439–446.

    Article  CAS  PubMed  Google Scholar 

  6. Dimitrov, J.D., C. Planchais, J. Kang, A. Pashov, T.L. Vassilev, S.V. Kaveri, and S. Lacroix-Desmazes. 2010. Heterogeneous antigen recognition behavior of induced polyspecific antibodies. Biochemical and Biophysical Research Communications 398(2): 266–271.

    Article  CAS  PubMed  Google Scholar 

  7. Dimitrov, J.D., L.T. Roumenina, V.R. Doltchinkova, N.M. Mihaylova, S. Lacroix-Desmazes, S.V. Kaveri, and T.L. Vassilev. 2007. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. Journal of Biological Chemistry 282(37): 26696–26706.

    Article  CAS  PubMed  Google Scholar 

  8. Dimitrov, J.D., T.L. Vassilev, S. Andre, S.V. Kaveri, and S. Lacroix-Desmazes. 2008. Functional variability of antibodies upon oxidative processes. Autoimmunity Reviews 7(7): 574–578.

    Article  CAS  PubMed  Google Scholar 

  9. McIntyre, J.A., D.R. Wagenknecht, and W.P. Faulk. 2005. Autoantibodies unmasked by redox reactions. Journal of Autoimmunity 24(4): 311–317.

    Article  CAS  PubMed  Google Scholar 

  10. Mihaylova, N.M., J.D. Dimitrov, I.K. Djoumerska-Alexieva, and T.L. Vassilev. 2008. Inflammation-induced enhancement of IgG immunoreactivity. Inflammation Research 57(1): 1–3.

    Article  CAS  PubMed  Google Scholar 

  11. Kazatchkine, M.D., and S.V. Kaveri. 2001. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. New England Journal of Medicine 345(10): 747–755.

    Article  CAS  PubMed  Google Scholar 

  12. Djoumerska-Alexieva, I., L. Roumenina, A. Pashov, J. Dimitrov, M. Hadzhieva, S. Lindig, et al. 2015. Intravenous immunoglobulin with enhanced polyspecificity improves survival in experimental sepsis and aseptic systemic inflammatory response syndromes. Molecular Medicine 21: 1002–1010.

    Article  CAS  Google Scholar 

  13. Pavlovic, S., N. Zdravkovic, J.D. Dimitrov, A. Djukic, N. Arsenijevic, T.L. Vassilev, and M.L. Lukic. 2011. Intravenous immunoglobulins exposed to heme (heme IVIG) are more efficient than IVIG in attenuating autoimmune diabetes. Clinical Immunology 138(2): 162–171.

    Article  CAS  PubMed  Google Scholar 

  14. Xiao, W., M.N. Mindrinos, J. Seok, J. Cuschieri, A.G. Cuenca, H. Gao, et al. 2011. A genomic storm in critically injured humans. Journal of Experimental Medicine 208(13): 2581–2590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roumenina, L.T., J. Rayes, S. Lacroix-Desmazes, and J.D. Dimitrov. 2016. Heme: modulator of plasma systems in hemolytic diseases. Trends in Molecular Medicine 22(3): 200–213.

    Article  CAS  PubMed  Google Scholar 

  16. Lecerf, M., T. Scheel, A.D. Pashov, A. Jarossay, D. Ohayon, C. Planchais, et al. 2015. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. Journal of Biological Chemistry 290(8): 5203–5213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassu, et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2(51): 51ra71.

    Article  PubMed  Google Scholar 

  18. Brocklehurst, P., B. Farrell, A. King, E. Juszczak, B. Darlow, K. Haque, A. Salt, B. Stenson, and W. Tarnow-Mordi. 2011. Treatment of neonatal sepsis with intravenous immune globulin. New England Journal of Medicine 365(13): 1201–1211.

    Article  PubMed  Google Scholar 

  19. Dimitrov, J.D., C. Planchais, T. Scheel, D. Ohayon, S. Mesnage, C. Berek, S.V. Kaveri, and S. Lacroix-Desmazes. 2014. A cryptic polyreactive antibody recognizes distinct clades of HIV-1 glycoprotein 120 by an identical binding mechanism. Journal of Biological Chemistry 289(25): 17767–17779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.

    Article  CAS  PubMed  Google Scholar 

  21. Xu, J., X. Zhang, R. Pelayo, M. Monestier, C.T. Ammollo, F. Semeraro, et al. 2009. Extracellular histones are major mediators of death in sepsis. Nature Medicine 15(11): 1318–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiang, X., W.L. Yang, R. Wu, M. Zhou, A. Jacob, W. Dong, et al. 2013. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature Medicine 19(11): 1489–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Czermak, B.J., V. Sarma, C.L. Pierson, R.L. Warner, M. Huber-Lang, N.M. Bless, H. Schmal, H.P. Friedl, and P.A. Ward. 1999. Protective effects of C5a blockade in sepsis. Nature Medicine 5(7): 788–792.

    Article  CAS  PubMed  Google Scholar 

  24. Riedemann, N.C., R.F. Guo, and P.A. Ward. 2003. Novel strategies for the treatment of sepsis. Nature Medicine 9(5): 517–524.

    Article  CAS  PubMed  Google Scholar 

  25. Rittirsch, D., M.A. Flierl, B.A. Nadeau, D.E. Day, M. Huber-Lang, C.R. Mackay, et al. 2008. Functional roles for C5a receptors in sepsis. Nature Medicine 14(5): 551–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volman, T.J., T. Hendriks, and R.J. Goris. 2005. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23(4): 291–297.

    Article  CAS  PubMed  Google Scholar 

  27. Hubbard, W.J., M. Choudhry, M.G. Schwacha, J.D. Kerby, L.W. Rue 3rd, K.I. Bland, and I.H. Chaudry. 2005. Cecal ligation and puncture. Shock 24(Suppl 1): 52–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Bulgarian Science Fund (grant DFNI B02/29) and from the Agence Nationale de la Recherche (ANR-13-JCV1-006-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iglika Djoumerska-Alexieva.

Ethics declarations

The experimental protocols were approved by the Animal Care Commission of the Institute of Microbiology in accordance with National and European Regulations (BABH protocol #105/10 July 2014).

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(JPG 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djoumerska-Alexieva, I., Roumenina, L.T., Stefanova, T. et al. Heme-Exposed Pooled Therapeutic IgG Improves Endotoxemia Survival. Inflammation 40, 117–122 (2017). https://doi.org/10.1007/s10753-016-0460-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0460-x

KEY WORDS

Navigation