Advertisement

Inflammation

, Volume 40, Issue 1, pp 117–122 | Cite as

Heme-Exposed Pooled Therapeutic IgG Improves Endotoxemia Survival

  • Iglika Djoumerska-AlexievaEmail author
  • Lubka T. Roumenina
  • Tsvetanka Stefanova
  • Tchavdar Vassilev
  • Jordan D. Dimitrov
ORIGINAL ARTICLE

Abstract

Antibody repertoires of healthy humans and animals contain a fraction of antibodies able to acquire additional polyspecificity following exposure to several biologically relevant redox molecules (free heme, reactive oxygen species, ferrous ions, HOCl, etc.). The physiological role of these “hidden” polyspecific antibodies is poorly understood. Similar to inherently polyspecific antibodies, those with induced polyspecificicty may also have immunoregulatory properties. We have previously shown that a pooled human IgG preparation, modified by the exposure to ferrous ions, acquires the ability to significantly improve survival of animals with polymicrobial sepsis or aseptic systemic inflammation induced by bacterial lipopolysaccharide or zymosan administration. In the present study, we have analyzed the effects of administration of heme-exposed pooled human IgG in the same models of sepsis and aseptic systemic inflammation. The administration of a single dose of heme-exposed pooled IgG has resulted in a significant increase in the survival of mice with endotoxinemia, but not in those with polymicrobial sepsis and zymosan-induced severe generalized inflammation. Finally, we have provided evidence that the anti-inflammatory effect of heme-exposed IgG can be explained by scavenging of pro-inflammatory mediators.

KEY WORDS

IVIg sepsis antibody polyspecificity passive immunotherapy heme 

Notes

Acknowledgments

This work was supported by grants from the Bulgarian Science Fund (grant DFNI B02/29) and from the Agence Nationale de la Recherche (ANR-13-JCV1-006-01).

Compliance with Ethical Standards

The experimental protocols were approved by the Animal Care Commission of the Institute of Microbiology in accordance with National and European Regulations (BABH protocol #105/10 July 2014).

Supplementary material

10753_2016_460_MOESM1_ESM.jpg (33 kb)
ESM 1 (JPG 32 kb)

References

  1. 1.
    Notkins, A. 2004. Polyreactivity of antibody molecules. Trends in Immunology 25(4): 174–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Dimitrov, J.D., C. Planchais, L.T. Roumenina, T.L. Vassilev, S.V. Kaveri, and S. Lacroix-Desmazes. 2013. Antibody polyreactivity in health and disease: statu variabilis. Journal of Immunology 191(3): 993–9.CrossRefGoogle Scholar
  3. 3.
    Zhou, Z.H., A.G. Tzioufas, and A.L. Notkins. 2007. Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells. Journal of Autoimmunity 29(4): 219–228.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou, Z.H., Y. Zhang, Y.F. Hu, L.M. Wahl, J.O. Cisar, and A.L. Notkins. 2007. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host & Microbe 1(1): 51–61.CrossRefGoogle Scholar
  5. 5.
    Dimitrov, J.D., N.D. Ivanovska, S. Lacroix-Desmazes, V.R. Doltchinkova, S.V. Kaveri, and T.L. Vassilev. 2006. Ferrous ions and reactive oxygen species increase antigen-binding and anti-inflammatory activities of immunoglobulin G. Journal of Biological Chemistry 281(1): 439–446.CrossRefPubMedGoogle Scholar
  6. 6.
    Dimitrov, J.D., C. Planchais, J. Kang, A. Pashov, T.L. Vassilev, S.V. Kaveri, and S. Lacroix-Desmazes. 2010. Heterogeneous antigen recognition behavior of induced polyspecific antibodies. Biochemical and Biophysical Research Communications 398(2): 266–271.CrossRefPubMedGoogle Scholar
  7. 7.
    Dimitrov, J.D., L.T. Roumenina, V.R. Doltchinkova, N.M. Mihaylova, S. Lacroix-Desmazes, S.V. Kaveri, and T.L. Vassilev. 2007. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. Journal of Biological Chemistry 282(37): 26696–26706.CrossRefPubMedGoogle Scholar
  8. 8.
    Dimitrov, J.D., T.L. Vassilev, S. Andre, S.V. Kaveri, and S. Lacroix-Desmazes. 2008. Functional variability of antibodies upon oxidative processes. Autoimmunity Reviews 7(7): 574–578.CrossRefPubMedGoogle Scholar
  9. 9.
    McIntyre, J.A., D.R. Wagenknecht, and W.P. Faulk. 2005. Autoantibodies unmasked by redox reactions. Journal of Autoimmunity 24(4): 311–317.CrossRefPubMedGoogle Scholar
  10. 10.
    Mihaylova, N.M., J.D. Dimitrov, I.K. Djoumerska-Alexieva, and T.L. Vassilev. 2008. Inflammation-induced enhancement of IgG immunoreactivity. Inflammation Research 57(1): 1–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Kazatchkine, M.D., and S.V. Kaveri. 2001. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. New England Journal of Medicine 345(10): 747–755.CrossRefPubMedGoogle Scholar
  12. 12.
    Djoumerska-Alexieva, I., L. Roumenina, A. Pashov, J. Dimitrov, M. Hadzhieva, S. Lindig, et al. 2015. Intravenous immunoglobulin with enhanced polyspecificity improves survival in experimental sepsis and aseptic systemic inflammatory response syndromes. Molecular Medicine 21: 1002–1010.CrossRefGoogle Scholar
  13. 13.
    Pavlovic, S., N. Zdravkovic, J.D. Dimitrov, A. Djukic, N. Arsenijevic, T.L. Vassilev, and M.L. Lukic. 2011. Intravenous immunoglobulins exposed to heme (heme IVIG) are more efficient than IVIG in attenuating autoimmune diabetes. Clinical Immunology 138(2): 162–171.CrossRefPubMedGoogle Scholar
  14. 14.
    Xiao, W., M.N. Mindrinos, J. Seok, J. Cuschieri, A.G. Cuenca, H. Gao, et al. 2011. A genomic storm in critically injured humans. Journal of Experimental Medicine 208(13): 2581–2590.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roumenina, L.T., J. Rayes, S. Lacroix-Desmazes, and J.D. Dimitrov. 2016. Heme: modulator of plasma systems in hemolytic diseases. Trends in Molecular Medicine 22(3): 200–213.CrossRefPubMedGoogle Scholar
  16. 16.
    Lecerf, M., T. Scheel, A.D. Pashov, A. Jarossay, D. Ohayon, C. Planchais, et al. 2015. Prevalence and gene characteristics of antibodies with cofactor-induced HIV-1 specificity. Journal of Biological Chemistry 290(8): 5203–5213.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassu, et al. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2(51): 51ra71.CrossRefPubMedGoogle Scholar
  18. 18.
    Brocklehurst, P., B. Farrell, A. King, E. Juszczak, B. Darlow, K. Haque, A. Salt, B. Stenson, and W. Tarnow-Mordi. 2011. Treatment of neonatal sepsis with intravenous immune globulin. New England Journal of Medicine 365(13): 1201–1211.CrossRefPubMedGoogle Scholar
  19. 19.
    Dimitrov, J.D., C. Planchais, T. Scheel, D. Ohayon, S. Mesnage, C. Berek, S.V. Kaveri, and S. Lacroix-Desmazes. 2014. A cryptic polyreactive antibody recognizes distinct clades of HIV-1 glycoprotein 120 by an identical binding mechanism. Journal of Biological Chemistry 289(25): 17767–17779.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu, J., X. Zhang, R. Pelayo, M. Monestier, C.T. Ammollo, F. Semeraro, et al. 2009. Extracellular histones are major mediators of death in sepsis. Nature Medicine 15(11): 1318–1321.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qiang, X., W.L. Yang, R. Wu, M. Zhou, A. Jacob, W. Dong, et al. 2013. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature Medicine 19(11): 1489–1495.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Czermak, B.J., V. Sarma, C.L. Pierson, R.L. Warner, M. Huber-Lang, N.M. Bless, H. Schmal, H.P. Friedl, and P.A. Ward. 1999. Protective effects of C5a blockade in sepsis. Nature Medicine 5(7): 788–792.CrossRefPubMedGoogle Scholar
  24. 24.
    Riedemann, N.C., R.F. Guo, and P.A. Ward. 2003. Novel strategies for the treatment of sepsis. Nature Medicine 9(5): 517–524.CrossRefPubMedGoogle Scholar
  25. 25.
    Rittirsch, D., M.A. Flierl, B.A. Nadeau, D.E. Day, M. Huber-Lang, C.R. Mackay, et al. 2008. Functional roles for C5a receptors in sepsis. Nature Medicine 14(5): 551–557.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Volman, T.J., T. Hendriks, and R.J. Goris. 2005. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23(4): 291–297.CrossRefPubMedGoogle Scholar
  27. 27.
    Hubbard, W.J., M. Choudhry, M.G. Schwacha, J.D. Kerby, L.W. Rue 3rd, K.I. Bland, and I.H. Chaudry. 2005. Cecal ligation and puncture. Shock 24(Suppl 1): 52–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Immunology, Stefan Angelov Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.UMRS 1138, Centre de Recherche des CordeliersSorbonne Universités, UPMC Univ Paris 06ParisFrance
  3. 3.INSERM, UMR_S 1138Centre de Recherche des CordeliersParisFrance
  4. 4.Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des CordeliersUniversité Paris DescartesParisFrance

Personalised recommendations