Inflammation

, Volume 40, Issue 1, pp 106–116 | Cite as

Distinct Secretory Activity and Clinical Impact of Subcutaneous Abdominal Adipose Tissue in Women with Rheumatoid Arthritis and Osteoarthritis

  • Ewa Kontny
  • Agnieszka Zielińska
  • Urszula Skalska
  • Krystyna Księżopolska-Orłowska
  • Piotr Głuszko
  • Włodzimierz Maśliński
ORIGINAL ARTICLE
  • 282 Downloads

Abstract

In the general population, low-grade inflammation of adipose tissue accompanies obesity and contributes to cardiovascular disease (CVD) development, but the implication of this tissue in rheumatic disease pathology is unclear. Therefore, we characterized the secretory activity of subcutaneous abdominal adipose tissue (SAAT) of females with rheumatoid arthritis (RA) and osteoarthritis (OA) and searched for its relationship with intensity of systemic inflammation, body composition and comorbidity. The secretion of classical adipokines (leptin, adiponectin), pro- and anti-inflammatory factors, i.e. interleukin (IL)-6, IL-8, IL-10, tumour necrosis factor (TNF), macrophage migration inhibitory factor (MIF) and hepatocyte growth factor (HGF), from SAAT explants was measured by specific enzyme-linked immunosorbent assays. Patients’ body composition was evaluated by bioelectric impendence technique. Rheumatoid SAAT secreted more adiponectin, IL-6, IL-10, TNF and MIF but less leptin than respective osteoarthritis tissues. In RA patients, TNF secretion correlated with cachectic body composition, HGF release was linked to secondary amyloidosis and visceral fat rating was an independent risk factor for CVD. In OA, secretion of leptin and HGF positively, while adiponectin inversely, correlated with systemic inflammation markers, and the release of MIF was an independent risk factor for CVD. This study reveals differences between RA and OA patients in SAAT secretory activity and suggests its different clinical impact in these diseases, characterized by high- and low-grade systemic inflammation, respectively. In RA, SAAT may directly or via an effect on body composition contribute to amyloidosis, cachexia or CVD co-occurring, while in OA SAAT-derived adipocytokines may rather regulate intensity of systemic inflammation and redound to CVD emergence.

KEY WORDS

subcutaneous abdominal adipose tissue activity osteoarthritis rheumatoid arthritis comorbidity systemic inflammation body composition 

Notes

Acknowledgments

We gratefully acknowledge all patients for their contribution to the study and Iwona Janicka and Urszula Musiałowicz for outstanding technical assistance.

Authors’ Contributions

All authors have made substantial contributions to (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data; (2) drafting the article or revising it critically for important intellectual content; and (3) final approval of the version to be submitted.

Compliance with Ethical Standards

Ethical Approval

All procedures involving human participants were performed in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflicts of interests.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Funding

This study was funded by the National Institute of Geriatrics, Rheumatology and Rehabilitation (grant number S/16), Warsaw, Poland. The National Institute of Geriatrics, Rheumatology and Rehabilitation is supported by a core grant from the Ministry of Science and Higher Education (Poland).

References

  1. 1.
    Boissier, M.C., L. Semerano, S. Challal, N. Saidenberg-Kermanac’h, and D. Falgarone. 2012. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. Journal of Autoimmunity 39: 222–228.CrossRefPubMedGoogle Scholar
  2. 2.
    Cutolo, M., G.D. Kitas, and P.L. van Riel. 2014. Burden of disease in treated rheumatoid arthritis patients: going beyond the joint. Seminars in Arthritis and Rheumatism 43: 479–488.CrossRefPubMedGoogle Scholar
  3. 3.
    Berenbaum, F. 2013. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis). Osteoarthritis and Cartilage 21: 16–21.CrossRefPubMedGoogle Scholar
  4. 4.
    van Dijk, G.M., C. Veenhof, F. Schellevis, H. Hulsmans, J.P. Bakker, H. Arwent, J.H. Dekker, G.J. Lankhorst, and J. Dekker. 2008. Comorbidity, limitations in activities and pain in patients with osteoarthritis of the hip or knee. BMC Musculoskeletal Disorders 9: 95.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Johnson, V.L., and D.J. Hunter. 2014. The epidemiology of osteoarthritis. Best Practice and Research Clinical Rheumatology 28: 5–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Pottie, P., N. Presle, B. Terlain, P. Netter, D. Mainard, and F. Berenbaum. 2006. Obesity and osteoarthritis: more complex than predicted! Annals of the Rheumatic Diseases 65: 1403–1405.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Versini, M., P.Y. Jeandel, E. Rosenthal, and Y. Shoenfeld. 2014. Obesity in autoimmune diseases: not a passive bystander. Autoimmunity Reviews 13: 981–1000.CrossRefPubMedGoogle Scholar
  8. 8.
    Summers, G.D., C.M. Deighton, M.J. Rennie, and A.H. Booth. 2008. Rheumatoid cachexia: a clinical perspective. Rheumatology (Oxford) 47: 1124–1131.CrossRefGoogle Scholar
  9. 9.
    Masuko, K. 2014. Rheumatoid cachexia revised: a metabolic co-morbidity in rheumatoid arthritis. Frontiers in Nutrition 1: 20.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Galic, S., J.S. Oakhill, and G.R. Steinberg. 2010. Adipose tissue as an endocrine organ. Molecular and Cellular Endocrinology 316: 129–139.CrossRefPubMedGoogle Scholar
  11. 11.
    Gustafson, B. 2010. Adipose tissue, inflammation and atherosclerosis. Journal of Atherosclerosis and Thrombosis 17: 332–341.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, M.J., Y. Wu, and S.K. Fried. 2013. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Molecular Aspects of Medicine 34: 1–11.CrossRefPubMedGoogle Scholar
  13. 13.
    White, U., and Y.D. Tchoukalova. 2014. Sex dimorphism and depot differences in adipose tissue function. Biochimica et Biophysica Acta 1842: 377–392.CrossRefPubMedGoogle Scholar
  14. 14.
    Kontny, E., M. Plebanczyk, B. Lisowska, M. Olszewska, P. Maldyk, and W. Maslinski. 2012. Comparison of rheumatoid articular adipose and synovial tissue reactivity to proinflammatory stimuli: contribution to adipocytokine network. Annals of the Rheumatic Diseases 71: 262–267.CrossRefPubMedGoogle Scholar
  15. 15.
    Eymard, F., A. Pigenet, D. Citadelle, C.H. Flouzat-Lachaniette, A. Poignard, C. Benelli, F. Berenbaum, X. Chevalier, and X. Houard. 2014. Induction of an inflammatory and prodegenerative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis and Rheumatology 66: 2165–2174.CrossRefPubMedGoogle Scholar
  16. 16.
    Arnett, F.C., S.M. Edworthy, D.A. Bloch, D.J. McShane, J.F. Fries, N.S. Cooper, L.A. Healey, S.R. Kaplan, M.H. Liang, H.S. Luthra, et al. 1988. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and Rheumatism 31: 315–324.CrossRefPubMedGoogle Scholar
  17. 17.
    Real de Asúa, D., R. Costa, J.M. Galván, M.T. Filigheddu, D. Trujillo, and J. Cadiñanos. 2014. Systemic AA amyloidosis: epidemiology, diagnosis, and management. Clinical Epidemiology 6: 369–377.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sokolove, J., and C.M. Lepus. 2013. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5: 77–94.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lee, B.C., and J. Lee. 2014. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et Biophysica Acta 1842: 446–462.CrossRefPubMedGoogle Scholar
  20. 20.
    Kontny, E., and M. Prochorec-Sobieszek. 2013. Articular adipose tissue resident macrophages in rheumatoid arthritis patients: potential contribution to local abnormalities. Rheumatology (Oxford) 52: 2158–2167.CrossRefGoogle Scholar
  21. 21.
    Stavropoulos-Kalinoglou, A., G.S. Metsios, Y. Koutedakis, and G.D. Kitas. 2011. Obesity in rheumatoid arthritis. Rheumatology (Oxford) 50: 450–462.CrossRefGoogle Scholar
  22. 22.
    Šenolt, L., A. Kuklová, L.A. Cerezo, H. Hulejová, M. Filková, L. Bošanovská, O. Pecha, K. Pavelka, M. HaluzíK, and J. Vencovský. 2011. Adipokine profile is modulated in subcutaneous adipose tissue by TNFα inhibitors in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases 70: 2054–2056.CrossRefPubMedGoogle Scholar
  23. 23.
    Toussirot, E., L. Mourot, B. Dehecq, D. Wendling, É. Grandclément, and G. Dumoulin. 2014. TNFα blockade for inflammatory rheumatic diseases is associated with a significant gain in android fat mass and has varying effects on adipokines: a 2-year prospective study. European Journal of Nutrition 53: 951–961.CrossRefPubMedGoogle Scholar
  24. 24.
    Baker, J.F., J. Von Feldt, S. Mostoufi-Moab, G. Noaiseh, E. Taratuta, W. Kim, and M.B. Leonard. 2014. Deficit in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care and Research 66: 1612–1618.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stofkova, A. 2009. Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocrine Regulations 43: 157–168.PubMedGoogle Scholar
  26. 26.
    Adamopoulous, I.E., and N.A. Athanasou. 2006. Hepatocyte growth factor in normal and diseased bone and joint tissue. Current Rheumatology Reviews 2: 1–7.Google Scholar
  27. 27.
    Mabey, T., S. Honsawek, N. Saetan, Y. Poovorawan, A. Tanavalee, and P. Yuktanandana. 2014. Angiogenic cytokine expression profiles in plasma and synovial fluid of primary knee osteoarthritis. International Orthopaedics 38: 1885–1892.CrossRefPubMedGoogle Scholar
  28. 28.
    Mirpourian, M., M. Salesi, H. Abdolahi, Z. Faraizadegan, and H. Karimzadeh. 2014. The association of body mass index with disease activity and clinical response to combinational therapy in patients with rheumatoid arthritis. Journal of Research in Medical Sciences 19: 509–514.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Giles, J.T., M. Allison, R.S. Blumenthal, W. Post, A.C. Gelber, M. Petri, R. Tracy, M. Szklo, and J.M. Bathon. 2010. Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis and Rheumatism 62: 3173–3182.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nakamura, K., J.J. Fuster, and K. Walsh. 2014. Adipokines: a link between obesity and cardiovascular disease. Journal of Cardiology 63: 250–259.CrossRefPubMedGoogle Scholar
  31. 31.
    Bag-Ozbek, A., and J.T. Giles. 2015. Inflammation, adiposity, and atherogenic dyslipidemia in rheumatoid arthritis: is there a paradoxical relationship? Current Allergy and Asthma Reports 15: 497.CrossRefPubMedGoogle Scholar
  32. 32.
    Morrison, M.C., and R. Kleemann. 2015. Role of macrophage migration inhibitory factor in obesity, insulin resistance, type 2 diabetes, and associated hepatic co-morbidities: a comprehensive review of human and rodent studies. Frontiers in Immunology 6: 308.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zenecke, A., J. Bernhagen, and C. Weber. 2009. Macrophage migration inhibitory factor in cardiovascular disease. Circulation 117: 1594–1602.CrossRefGoogle Scholar
  34. 34.
    Benigni, F., T. Atsumi, T. Calandra, C. Metz, B. Echtenacher, T. Peng, and R. Bucala. 2000. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. Journal of Clinical Investigation 106: 1291–1300.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Batista Jr., M.L., R.X. Neves, S.B. Peres, A.S. Yamashita, C.S. Shida, S.R. Farmer, and M. Seelaender. 2013. Heterogenous time-dependent response of adipose tissue during the development of cancer cachexia. Journal of Endocrinology 215: 363–373.CrossRefGoogle Scholar
  36. 36.
    Nakamura, T., K. Saki, T. Nakamura, and K. Matsumoto. 2011. Hepatocyte growth factor twenty years on: much more than growth factor. Journal of Gastroenterology and Hepatology 26(Suppl 1): 188–202.CrossRefPubMedGoogle Scholar
  37. 37.
    Grandaunet, B., S.W. Syversen, M. Hoff, A. Sundan, G. Haugeberg, D. van Der Heijde, T.K. Kvien, and T. Standal. 2011. Association between high plasma levels of hepatocyte growth factor and progression of radiographic damage in the joints of patients with rheumatoid arthritis. Arthritis and Rheumatism 63: 662–669.CrossRefPubMedGoogle Scholar
  38. 38.
    Konya, H., M. Miuchi, K. Satani, S. Matsutani, T. Tsunoda, Y. Yano, T. Katsuno, T. Hamaguchi, J. Miyagawa, and M. Namba. 2014. Hepatocyte growth factor, a biomarker of macroangiopathy in diabetes mellitus. World Journal of Diabetes 5: 678–688.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shikano, M., H. Kushimoto, H. Hasegawa, M. Tomita, M. Hasegawa, K. Murakami, and S. Kawashima. 2000. Usefulness of serum hepatocyte growth factor for the diagnosis of amyloidosis. Internal Medicine 39: 715–719.CrossRefPubMedGoogle Scholar
  40. 40.
    Nakamura, T. 2011. Amyloid A amyloidosis secondary to rheumatoid arthritis: pathophysiology and treatments. Clinical and Experimental Rheumatology 29: 850–857.PubMedGoogle Scholar
  41. 41.
    Sporanova, J., S.N. Nystrom, and G.T. Westermark. 2008. AA-amyloidosis can be transferred by peripheral blood monocytes. PloS One 3: e3308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ewa Kontny
    • 1
  • Agnieszka Zielińska
    • 2
  • Urszula Skalska
    • 1
  • Krystyna Księżopolska-Orłowska
    • 3
  • Piotr Głuszko
    • 2
  • Włodzimierz Maśliński
    • 1
  1. 1.Department of Pathophysiology and Immunology, National Institute of GeriatricsRheumatology and RehabilitationWarsawPoland
  2. 2.Department of Rheumatology, National Institute of GeriatricsRheumatology and RehabilitationWarsawPoland
  3. 3.Rehabilitation Department, National Institute of GeriatricsRheumatology and RehabilitationWarsawPoland

Personalised recommendations