, Volume 40, Issue 1, pp 92–99 | Cite as

Reconfiguration of NKT Cell Subset Compartment Is Associated with Plaque Development in Patients with Carotid Artery Stenosis

  • Lun Cai
  • Lei Yu
  • Sa Liu
  • Tongxun Li
  • Xiaoping Zhang
  • Wei Cui
  • Jie Du
  • Qinyi ZhangEmail author


Accumulating evidence shows that immune cells play an important role in carotid atherosclerotic plaque development. In this study, we assessed the association of 6 different natural killer T (NKT) cell subsets, based on CD57 and CD8 expression, with risk for development of carotid atherosclerotic plaque (CAP). Molecular expression by peripheral NKT cells was evaluated in 13 patients with high-risk CAP and control without carotid stenosis (n = 18). High-risk CAP patients, compared with healthy subjects, had less percentage of CD57+CD8− NKT cell subsets (8.64 ± 10.15 versus 19.62 ± 10.8 %; P = 0.01) and CD57+CD8int NKT cell subsets (4.32 ± 3.04 versus 11.87 ± 8.56 %; P = 0.002), with a corresponding increase in the CD57−CD8high NKT cell subsets (33.22 ± 11.87 versus 18.66 ± 13.68 %; P = 0.007). Intracellular cytokine staining showed that CD8+ NKT cell subset was the main cytokine-producing NKT cell. Cytokine production in plasma was measured with Bio-Plex assay. The expression levels of pro-inflammatory mediators (IFN-γ, IL-17, IP-10) were significantly higher in CAP patients as compared to that from controls. These data provide evidence that NKT cell subset compartment reconfiguration in patients with carotid stenosis seems to be associated with the occurrence of carotid atherosclerotic plaque and suggest that both pathogenic and protective NKT cell subsets exist.


carotid artery stenosis natural killer T cell subsets reconfiguration inflammation 



This study was supported by the Open Project of Key Laboratory of Ministry of Education (2013XXGB02).

Compliance with Ethical Standards

The study was approved by the Ethics Committee and written informed consent was obtained from all participants. All experiments were performed in accordance with relevant guidelines and regulations, and the plasma was stored at −80 °C until analysis in the approved biobank.

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mathers, C.D., T. Boerma, and Fat D. Ma. 2009. Global and regional causes of death. British Medical Bulletin 92: 7–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Hansson, G.K., and A. Hermansson. 2011. The immune system in atherosclerosis. Nature Immunology 12: 204–212.CrossRefPubMedGoogle Scholar
  3. 3.
    Pitocco, D., S. Giubilato, F. Zaccardi, E. Di Stasio, A. Buffon, L.M. Biasucci, et al. 2009. Pioglitazone reduces monocyte activation in type 2 diabetes. Acta Diabetologica 46: 75–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352: 1685–1695.CrossRefPubMedGoogle Scholar
  5. 5.
    Ciccone, M.M., A. Marzullo, D. Mizio, D. Angiletta, F. Cortese, P. Scicchitano, et al. 2011. Can carotid plaque histology selectively predict the risk of an acute coronary syndrome? International Heart Journal 52: 72–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Xia, Q., X. Xiang, S. Patel, R. Puranik, Q. Xie, and S. Bao. 2012. Characterisation of IL-22 and interferon-gamma-inducible chemokines in human carotid plaque. International Journal of Cardiology 154: 187–189.CrossRefPubMedGoogle Scholar
  7. 7.
    Van Der Vliet, H.J., N. Nishi, Y. Koezuka, M.A. Peyrat, B.M. Von Blomberg, A.J. Van Den Eertwegh, et al. 1999. Effects of alpha-galactosylceramide (KRN7000), interleukin-12 and interleukin-7 on phenotype and cytokine profile of human Valpha24+ Vbeta11+ T cells. Immunology 98: 557–563.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vivier, E., and N. Anfossi. 2004. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nature Reviews Immunology 4: 190–198.CrossRefPubMedGoogle Scholar
  9. 9.
    Braunersreuther, V., F. Mach, and S. Steffens. 2007. The specific role of chemokines in atherosclerosis. Thrombosis and Haemostasis 97: 714–721.PubMedGoogle Scholar
  10. 10.
    Profumo, E., A. Siracusano, E. Ortona, P. Margutti, A. Carra, A. Costanzo, et al. 2003. Cytokine expression in circulating T lymphocytes from patients undergoing carotid endarterectomy. The Journal of Cardiovascular Surgery 44: 237–242.PubMedGoogle Scholar
  11. 11.
    Li, Y., K. To, P. Kanellakis, H. Hosseini, V. Deswaerte, P. Tipping, et al. 2015. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circulation Research 116: 245–254.CrossRefPubMedGoogle Scholar
  12. 12.
    Subramanian, S., M.S. Turner, Y. Ding, L. Goodspeed, S. Wang, J.H. Buckner, et al. 2013. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. Journal of Lipid Research 54: 2831–2841.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kyriakakis, E., M. Cavallari, J. Andert, M. Philippova, C. Koella, V. Bochkov, et al. 2010. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. European Journal of Immunology 40: 3268–3279.CrossRefPubMedGoogle Scholar
  14. 14.
    Bobryshev, Y.V., and R.S. Lord. 2005. Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques. Journal of Histochemistry and Cytochemistry 53: 781–785.CrossRefPubMedGoogle Scholar
  15. 15.
    Smyth, M.J., M.E. Wallace, S.L. Nutt, H. Yagita, D.I. Godfrey, and Y. Hayakawa. 2005. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. Journal of Experimental Medicine 201: 1973–1985.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eberl, G., and H.R. MacDonald. 2000. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. European Journal of Immunology 30: 985–992.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim, C.H., B. Johnston, and E.C. Butcher. 2002. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood 100: 11–16.CrossRefPubMedGoogle Scholar
  18. 18.
    Gumperz, J.E., S. Miyake, T. Yamamura, and M.B. Brenner. 2002. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. Journal of Experimental Medicine 195: 625–636.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Montoya, C.J., D. Pollard, J. Martinson, K. Kumari, C. Wasserfall, C.B. Mulder, et al. 2007. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122: 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Godfrey, D.I., S. Stankovic, and A.G. Baxter. 2010. Raising the NKT cell family. Nature Immunology 11: 197–206.CrossRefPubMedGoogle Scholar
  21. 21.
    Major, A.S., S. Joyce, and L. Van Kaer. 2006. Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends in Molecular Medicine 12: 270–278.CrossRefPubMedGoogle Scholar
  22. 22.
    Tupin, E., A. Nicoletti, R. Elhage, M. Rudling, H.G. Ljunggren, G.K. Hansson, et al. 2004. CD1d-dependent activation of NKT cells aggravates atherosclerosis. Journal of Experimental Medicine 199: 417–422.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    To, K., A. Agrotis, G. Besra, A. Bobik, and B.H. Toh. 2009. NKT cell subsets mediate differential proatherogenic effects in ApoE−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology 29: 671–677.CrossRefPubMedGoogle Scholar
  24. 24.
    Coquet, J.M., K. Kyparissoudis, D.G. Pellicci, G. Besra, S.P. Berzins, M.J. Smyth, et al. 2007. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. Journal of Immunology 178: 2827–2834.CrossRefGoogle Scholar
  25. 25.
    Davenport, P., and P.G. Tipping. 2003. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. American Journal of Pathology 163: 1117–1125.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gupta, S., A.M. Pablo, X. Jiang, N. Wang, A.R. Tall, and C. Schindler. 1997. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. Journal of Clinical Investigation 99: 2752–2761.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Erbel, C., T.J. Dengler, S. Wangler, F. Lasitschka, F. Bea, N. Wambsganss, et al. 2011. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Research in Cardiology 106: 125–134.CrossRefPubMedGoogle Scholar
  28. 28.
    Ammirati, E., D. Cianflone, M. Banfi, V. Vecchio, A. Palini, M. De Metrio, et al. 2010. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1832–1841.CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto, S., P.G. Yancey, Y. Zuo, L.J. Ma, R. Kaseda, A.B. Fogo, et al. 2011. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 2856–2864.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nicholls, S.J., E.M. Tuzcu, K. Wolski, O. Bayturan, A. Lavoie, K. Uno, et al. 2011. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. Journal of the American College of Cardiology 57: 153–159.CrossRefPubMedGoogle Scholar
  31. 31.
    Saremi, A., D.C. Schwenke, T.A. Buchanan, H.N. Hodis, W.J. Mack, M. Banerji, et al. 2013. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 393–399.CrossRefPubMedGoogle Scholar
  32. 32.
    Babaev, V.R., P.G. Yancey, S.V. Ryzhov, V. Kon, M.D. Breyer, M.A. Magnuson, et al. 2005. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 25: 1647–1653.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lun Cai
    • 1
  • Lei Yu
    • 2
  • Sa Liu
    • 1
  • Tongxun Li
    • 2
  • Xiaoping Zhang
    • 1
  • Wei Cui
    • 1
  • Jie Du
    • 1
  • Qinyi Zhang
    • 2
    Email author
  1. 1.The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
  2. 2.Stroke Center, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina

Personalised recommendations