Advertisement

Inflammation

, Volume 39, Issue 5, pp 1690–1703 | Cite as

Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype

  • Michelle Seif
  • Anja Philippi
  • Frank Breinig
  • Alexandra K. Kiemer
  • Jessica Hoppstädter
ORIGINAL ARTICLE

Abstract

Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

KEY WORDS

macrophages macrophage polarization phagocytosis Saccharomyces cerevisiae yeast 

Notes

Acknowledgments

We would like to thank Prof. Dr. Leon Abelmann (KIST Europe) and Prof. Dr. Andreas Manz (KIST Europe) for their continuous support. This work was funded by the KIST-Europe basic research program (11402) and the DFG (KI702).

Compliance with ethical standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896. doi: 10.1038/ni.1937.CrossRefPubMedGoogle Scholar
  2. 2.
    Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi: 10.1038/ni.1990.CrossRefPubMedGoogle Scholar
  3. 3.
    Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi: 10.1189/jlb.0105015.Journal.CrossRefPubMedGoogle Scholar
  4. 4.
    Hamilton, T.A., C. Zhao, P.G.P. Jr, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6. doi: 10.3389/fimmu.2014.00554.CrossRefGoogle Scholar
  5. 5.
    Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11: 723–737. doi: 10.1038/nri3073.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi: 10.1038/mi.2014.65.CrossRefPubMedGoogle Scholar
  7. 7.
    Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi: 10.1002/pmic.201300508.CrossRefPubMedGoogle Scholar
  8. 8.
    De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi: 10.1155/2015/605450.
  9. 9.
    Ardiani, A., J.P. Higgins, and J.W. Hodge. 2010. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Research 10: 1060–1069. doi: 10.1111/j.1567-1364.2010.00665.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Walch, B., T. Breinig, M.J. Schmitt, and F. Breinig. 2012. Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Therapy 19: 237–245. doi: 10.1038/gt.2011.121.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi: 10.4049/jimmunol.1501158.Google Scholar
  12. 12.
    Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi: 10.1371/journal.pone.0060086.
  13. 13.
    Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6.Google Scholar
  14. 14.
    Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi: 10.1186/1465-9921-11-124.
  15. 15.
    Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi: 10.1371/journal.pone.0042656.
  16. 16.
    Xu, W., A. Roos, N. Schlagwein, A.M. Woltman, M.R. Daha, and C. Van Kooten. 2006. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930–4937. doi: 10.1182/blood-2005-10-4144.CrossRefPubMedGoogle Scholar
  17. 17.
    Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi: 10.1016/j.cellsig.2003.08.009.CrossRefPubMedGoogle Scholar
  18. 18.
    Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology 11: 750–761. doi: 10.1038/nri3088.CrossRefPubMedGoogle Scholar
  19. 19.
    Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation 122: 787–795. doi: 10.1172/JCI59643DS1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964. doi: 10.1038/nri1733.CrossRefPubMedGoogle Scholar
  21. 21.
    Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi: 10.1186/1479-5876-9-216.
  22. 22.
    Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi: 10.1002/eji.200737042.CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi: 10.4049/jimmunol.177.10.7303.CrossRefGoogle Scholar
  24. 24.
    Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197.Google Scholar
  25. 25.
    Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi: 10.1182/blood-2002-02-0538.CrossRefPubMedGoogle Scholar
  26. 26.
    Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi: 10.4049/jimmunol.1401722.CrossRefGoogle Scholar
  27. 27.
    Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi: 10.4049/jimmunol.1403207.CrossRefGoogle Scholar
  28. 28.
    Kenngott, E.E., R. Kiefer, N. Schneider-daum, A. Hamann, M. Schneider, M.J. Schmitt, et al. 2016. Surface-modified yeast cells : a novel eukaryotic carrier for oral application. Journal of Controlled Release 224: 1–7. doi: 10.1016/j.jconrel.2015.12.054.CrossRefPubMedGoogle Scholar
  29. 29.
    Keppler-Ross, S., L. Douglas, J.B. Konopka, and N. Dean. 2010. Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryotic Cell 9: 1776–1787. doi: 10.1128/EC.00156-10.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi: 10.1371/journal.pone.0078045.CrossRefGoogle Scholar
  31. 31.
    Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269.Google Scholar
  32. 32.
    Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi: 10.1016/j.cellimm.2013.01.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi: 10.1016/j.jim.2011.10.013.CrossRefPubMedGoogle Scholar
  34. 34.
    Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.PubMedGoogle Scholar
  35. 35.
    Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi: 10.1189/jlb.1202608.http.
  36. 36.
    Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi: 10.1016/j.vaccine.2011.07.141.CrossRefGoogle Scholar
  37. 37.
    Underhill, D.M., and H.S. Goodridge. 2012. Information processing during phagocytosis. Nature Reviews Immunology 12: 492–502. doi: 10.1038/nri3244.CrossRefPubMedGoogle Scholar
  38. 38.
    Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi: 10.4049/jimmunol.177.7.4679.CrossRefGoogle Scholar
  39. 39.
    Remondo, C., V. Cereda, S. Mostböck, and E. Al. 2009. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine 27: 987–994. doi: 10.1016/j.vaccine.2008.12.002.CrossRefPubMedGoogle Scholar
  40. 40.
    Shin, M., and H.S. Yoo. 2013. Animal vaccines based on orally presented yeast recombinants. Vaccine 31: 4287–4292. doi: 10.1016/j.vaccine.2013.07.029.CrossRefPubMedGoogle Scholar
  41. 41.
    Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi: 10.1007/s00262-013-1505-8.CrossRefGoogle Scholar
  42. 42.
    Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi: 10.1371/journal.pone.0120201.CrossRefGoogle Scholar
  43. 43.
    Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi: 10.1038/gt.2015.77.CrossRefPubMedGoogle Scholar
  44. 44.
    Kiflmariam, M.G., H. Yang, and Z. Zhang. 2013. Gene delivery to dendritic cells by orally administered recombinant Saccharomyces cerevisiae in mice. Vaccine 31: 1360–1363. doi: 10.1016/j.vaccine.2012.11.048.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang, L., T. Zhang, L. Wang, S. Shao, Z. Chen, and Z. Zhang. 2014. In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Sacchromyces cerevisiae. Gene Therapy 21: 709–714. doi: 10.1038/gt.2014.50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michelle Seif
    • 1
  • Anja Philippi
    • 1
  • Frank Breinig
    • 2
  • Alexandra K. Kiemer
    • 3
  • Jessica Hoppstädter
    • 3
  1. 1.Korea Institute of Science and Technology EuropeSaarbrueckenGermany
  2. 2.Molecular and Cell BiologySaarland UniversitySaarbrueckenGermany
  3. 3.Department of Pharmacy, Pharmaceutical BiologySaarland UniversitySaarbrueckenGermany

Personalised recommendations