Skip to main content

Advertisement

Log in

Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophages are a heterogeneous and plastic cell population with two main phenotypes: pro-inflammatory classically activated macrophages (M1) and anti-inflammatory alternatively activated macrophages (M2). Saccharomyces cerevisiae is a promising vehicle for the delivery of vaccines. It is well established that S. cerevisiae is taken up by professional phagocytic cells. However, the response of human macrophages to S. cerevisiae is ill-defined. In this study, we characterized the interaction between S. cerevisiae and M1- or M2-like macrophages. M1-like macrophages had a higher yeast uptake capacity than M2-like macrophages, but both cell types internalized opsonized yeast to the same extent. The M1 surface markers HLAII and CD86 were upregulated after yeast uptake in M1- and M2-like macrophages. Moreover, mRNA expression levels of pro-inflammatory cytokines, such as TNF-α, IL-12, and IL-6, increased, whereas the expression of anti-inflammatory mediators did not change. These results demonstrate that S. cerevisiae can target both M1 and M2 macrophages, paralleled by skewing toward an M1 phenotype. Thus, the use of yeast-based delivery systems might be a promising approach for the treatment of pathologic conditions that would benefit from the presence of M1-polarized macrophages, such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  2. Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238. doi:10.1038/ni.1990.

    Article  CAS  PubMed  Google Scholar 

  3. Verreck, F.A.W., T. De Boer, D.M.L. Langenberg, L. Van Der Zanden, and T.H.M. Ottenhoff. 2006. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-ɣ- and CD40L-mediated costimulation. Journal of Leukocyte Biology 79: 285–293. doi:10.1189/jlb.0105015.Journal.

    Article  CAS  PubMed  Google Scholar 

  4. Hamilton, T.A., C. Zhao, P.G.P. Jr, and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 1–6. doi:10.3389/fimmu.2014.00554.

    Article  CAS  Google Scholar 

  5. Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11: 723–737. doi:10.1038/nri3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leopold Wager, C.M., and F.L. Wormley Jr. 2014. Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunology 7: 1023–1035. doi:10.1038/mi.2014.65.

    Article  CAS  PubMed  Google Scholar 

  7. Reales-Calderón, J.A., N. Aguilera-Montilla, Á.L. Corbí, G. Molero, and C. Gil. 2014. Proteomic characterization of human pro-inflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14: 1503–1518. doi:10.1002/pmic.201300508.

    Article  PubMed  Google Scholar 

  8. De Souza Silva, C., Tavares, A.H., Sousa Jeronimo, M., Soares De Lima, Y., Da Silveira Derengowski, L., Lorenzetti Bocca, A., et al. 2015. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF-and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators of Inflammation :17–19. doi:10.1155/2015/605450.

  9. Ardiani, A., J.P. Higgins, and J.W. Hodge. 2010. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Research 10: 1060–1069. doi:10.1111/j.1567-1364.2010.00665.x.

    Article  CAS  PubMed  Google Scholar 

  10. Walch, B., T. Breinig, M.J. Schmitt, and F. Breinig. 2012. Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Therapy 19: 237–245. doi:10.1038/gt.2011.121.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, M., F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al. 2016. Dectin-1 activation by a natural product β -glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. doi:10.4049/jimmunol.1501158.

    Google Scholar 

  12. Elcombe, S.E., Naqvi, S., Van Den Bosch, M.W.M., MacKenzie, K.F., Cianfanelli, F, Brown,G.D., et al. 2013. Dectin-1 Regulates IL-10 Production via a MSK1/2 and CREB Dependent Pathway and Promotes the Induction of Regulatory Macrophage Markers. PLoS One 8. doi:10.1371/journal.pone.0060086.

  13. Hoppstädter, J, Seif, M., Dembek, A., Cavelius, C., Huwer, H., Kraegeloh, A., et al. 2015. M2 polarization enhances silica nanoparticle uptake by macrophages. Front Pharmacol 6.

  14. Hoppstädter, J., B. Diesel, R. Zarbock, T. Breinig, D. Monz, M. Koch, et al. 2010. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respiratory Research 11: 1–15. doi:10.1186/1465-9921-11-124.

  15. Rey-Giraud, F., Hafner, M. and C.H. Ries. 2012. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 7. doi:10.1371/journal.pone.0042656.

  16. Xu, W., A. Roos, N. Schlagwein, A.M. Woltman, M.R. Daha, and C. Van Kooten. 2006. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930–4937. doi:10.1182/blood-2005-10-4144.

    Article  CAS  PubMed  Google Scholar 

  17. Bender, A.T., C.L. Ostenson, D. Giordano, and J.A. Beavo. 2004. Differentiation of human monocytes in vitro with granulocyte – macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cellular Signalling 16: 365–374. doi:10.1016/j.cellsig.2003.08.009.

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology 11: 750–761. doi:10.1038/nri3088.

    Article  CAS  PubMed  Google Scholar 

  19. Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation 122: 787–795. doi:10.1172/JCI59643DS1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964. doi:10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  21. Heusinkveld, M. and S.H. van der Burg. 2011. Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine 9. doi:10.1186/1479-5876-9-216.

  22. Xu, W., N. Schlagwein, A. Roos, T.K. van den Berg, M.R. Daha, and C. van Kooten. 2007. Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. European Journal of Immunology 37: 1594–1599. doi:10.1002/eji.200737042.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez, F.O., S. Gordon, M. Locati, A. Mantovani, F.O. Martinez, S. Gordon, et al. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311. doi:10.4049/jimmunol.177.10.7303.

    Article  CAS  Google Scholar 

  24. Hoppstädter, J., and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper (GILZ) in immuno suppression: master regulator or bystander? Oncotarget :1–11. doi:10.18632/oncotarget.6197.

  25. Berrebi, D., S. Bruscoli, N. Cohen, A. Foussat, G. Migliorati, L. Bouchet-Delbos, et al. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101: 729–738. doi:10.1182/blood-2002-02-0538.

    Article  CAS  PubMed  Google Scholar 

  26. Vago, J.P., L.P. Tavares, C.C. Garcia, K.M. Lima, L.O. Perucci, É.L. Vieira, et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. Journal of Immunology 194: 4940–4950. doi:10.4049/jimmunol.1401722.

    Article  CAS  Google Scholar 

  27. Hoppstädter, J., S.M. Kessler, S. Bruscoli, H. Huwer, C. Riccardi, and A.K. Kiemer. 2015. Glucocorticoid-induced leucine zipper: a critical factor in macrophage endotoxin tolerance. Journal of Immunology 194: 6057–6067. doi:10.4049/jimmunol.1403207.

    Article  Google Scholar 

  28. Kenngott, E.E., R. Kiefer, N. Schneider-daum, A. Hamann, M. Schneider, M.J. Schmitt, et al. 2016. Surface-modified yeast cells : a novel eukaryotic carrier for oral application. Journal of Controlled Release 224: 1–7. doi:10.1016/j.jconrel.2015.12.054.

    Article  CAS  PubMed  Google Scholar 

  29. Keppler-Ross, S., L. Douglas, J.B. Konopka, and N. Dean. 2010. Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryotic Cell 9: 1776–1787. doi:10.1128/EC.00156-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. \Kittan, N.A., R.M. Allen, A. Dhaliwal, K.A. Cavassani, M. Schaller, K.A. Gallagher, et al. 2013. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One 8: 1–15. doi:10.1371/journal.pone.0078045.

    Article  Google Scholar 

  31. Chroneos, Z., and V. L. Shepherd. 1995. Differential regulation of the mannose and SP-A receptors on macrophages. The American Journal of Physiology 269.

  32. Jaguin, M., N. Houlbert, O. Fardel, and V. Lecureur. 2013. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 281: 51–61. doi:10.1016/j.cellimm.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  33. Ambarus, C.A., S. Krausz, M. van Eijk, J. Hamann, T.R.D.J. Radstake, K.A. Reedquist, et al. 2012. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. Journal of Immunological Methods 375: 196–206. doi:10.1016/j.jim.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  34. Giaimis, J., Y. Lombard, and P. Fonteneau. 1993. Both mannose and betaglucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. Journal of Leukocyte Biology 54: 564–571.

    CAS  PubMed  Google Scholar 

  35. Porcaro, I., Vidal, M., Jouvert, S., Stahl, P.D., and J. Giaimis. 2003. Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. Journal of Leukocyte Biology 74. doi:10.1189/jlb.1202608.http.

  36. Boschi, S., G. Geginat, T. Breinig, M.J. Schmitt, and F. Breinig. 2011. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 29: 8165–8173. doi:10.1016/j.vaccine.2011.07.141.

    Article  Google Scholar 

  37. Underhill, D.M., and H.S. Goodridge. 2012. Information processing during phagocytosis. Nature Reviews Immunology 12: 492–502. doi:10.1038/nri3244.

    Article  CAS  PubMed  Google Scholar 

  38. Jouault, T., M. El Abed-El Behi, M. Martínez-Esparza, L. Breuilh, P.-A. Trinel, M. Chamaillard, et al. 2006. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. Journal of Immunology 177: 4679–4687. doi:10.4049/jimmunol.177.7.4679.

    Article  CAS  Google Scholar 

  39. Remondo, C., V. Cereda, S. Mostböck, and E. Al. 2009. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine 27: 987–994. doi:10.1016/j.vaccine.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  40. Shin, M., and H.S. Yoo. 2013. Animal vaccines based on orally presented yeast recombinants. Vaccine 31: 4287–4292. doi:10.1016/j.vaccine.2013.07.029.

    Article  CAS  PubMed  Google Scholar 

  41. Bilusic, M., C.R. Heery, P.M. Arlen, M. Rauckhorst, K.Y. Tsang, J.A. Tucker, et al. 2015. Phase I Trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy 63: 225–234. doi:10.1007/s00262-013-1505-8.

    Article  Google Scholar 

  42. Assis-Marques, M.A., A.F. Oliveira, L.P. Ruas, F. Reis, M.C. Roque-barreira, P. Sergio, et al. 2015. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One 10: 1–13. doi:10.1371/journal.pone.0120201.

    Article  Google Scholar 

  43. Walch-Rückheim, B., R. Kiefer, G. Geginat, M.J. Schmitt, and F. Breinig. 2015. Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen- presenting cells. Gene Therapy 23: 103–107. doi:10.1038/gt.2015.77.

    Article  PubMed  Google Scholar 

  44. Kiflmariam, M.G., H. Yang, and Z. Zhang. 2013. Gene delivery to dendritic cells by orally administered recombinant Saccharomyces cerevisiae in mice. Vaccine 31: 1360–1363. doi:10.1016/j.vaccine.2012.11.048.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, L., T. Zhang, L. Wang, S. Shao, Z. Chen, and Z. Zhang. 2014. In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Sacchromyces cerevisiae. Gene Therapy 21: 709–714. doi:10.1038/gt.2014.50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Leon Abelmann (KIST Europe) and Prof. Dr. Andreas Manz (KIST Europe) for their continuous support. This work was funded by the KIST-Europe basic research program (11402) and the DFG (KI702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Hoppstädter.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seif, M., Philippi, A., Breinig, F. et al. Yeast (Saccharomyces cerevisiae) Polarizes Both M-CSF- and GM-CSF-Differentiated Macrophages Toward an M1-Like Phenotype. Inflammation 39, 1690–1703 (2016). https://doi.org/10.1007/s10753-016-0404-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0404-5

KEY WORDS

Navigation