, Volume 39, Issue 4, pp 1285–1290 | Cite as

Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells

  • Guilherme Vargas Bochi
  • Vanessa Dorneles Torbitz
  • Roberto Christ Vianna Santos
  • Monica Cubillos-Rojas
  • José Luis Rosa López
  • Anna Maria Siebel
  • Patrícia Gomes
  • Jarbas Rodrigues de Oliveira
  • Rafael Noal Moresco


Fenton reaction is a new mechanism able to generate advanced oxidation protein products (AOPPs) by exposing the human serum albumin to the Fenton system. Here, we characterized the effects of Fenton reaction-generated advanced oxidation protein products (AOPP-FR) on the gene transcription of the nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in human embryonic kidney cells (HEK 293). To investigate the effects of AOPP-FR and AOPP-HOCl on transcription of inflammatory genes, the NF-κB, COX-2, and IL-6 luciferase promoter activities were analyzed. AOPP-FR and AOPP-HOCl were able to induce the activation of the gene transcription of NF-κB, COX-2, and IL-6 in HEK 293 cells. However, the effects of AOPP-FR were significantly higher than the effects of AOPP-HOCl in relation to COX-2 and IL-6. AOPP-FR induces the activation of the gene transcription of NF-κB, COX-2, and IL-6 and may represent a novel pathogenic mediator of inflammation in kidney.


fenton reaction advanced oxidation protein products hypochlorous acid inflammation HEK 293 



Advanced oxidation protein products


Fenton reaction-generated advanced oxidation protein products


Hypochlorous acid-generated advanced oxidation protein products



HEK 293

Human embryonic kidney cells


Hydroxyl radical


Hypochlorous acid


Human serum albumin






Nicotinamide adenine dinucleotide phosphate


Nuclear factor-κB


Reactive oxygen species



This study was supported by grants from the CAPES/DGU (BEX 4422/09-0 and 3449/11-4), Brazil, IDIBELL, and the Secretaría de Estado de Universidades, Ministerio de Ciencia e Innovación (PHB2008-0080-PC), Spain. The authors thank CNPq/Brazil and CAPES/Brazil for providing scholarships.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Valko, M., D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39: 44–84.CrossRefGoogle Scholar
  2. 2.
    Himmelfarb, J., and E. McMonagle. 2001. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney International 60: 358–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Galli, F. 2007. Protein damage and inflammation in uraemia and dialysis patients. Nephrology, Dialysis, Transplantation 5: 20–36.CrossRefGoogle Scholar
  4. 4.
    Capeillère-Blandin, C., V. Gausson, B. Descamps-Latscha, and V. Witko-Sarsat. 2004. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 1689: 91–102.CrossRefPubMedGoogle Scholar
  5. 5.
    Bochi, G.V., V.D. Torbitz, L.P. Cargnin, J.A. de Carvalho, P. Gomes, and R.N. Moresco. 2014. An alternative pathway through the fenton reaction for the formation of advanced oxidation protein products, a new class of inflammatory mediators. Inflammation 37: 512–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Gorudko, I.V., D.V. Grigorieva, E.V. Shamova, E.V. Mikhalchik, S.N. Cherenkevich, J. Arnhold, and O.M. Panasenko. 2014. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radical Biology & Medicine 68: 326–34.CrossRefGoogle Scholar
  7. 7.
    Rong, G., X. Tang, T. Guo, N. Duan, Y. Wang, L. Yang, J. Zhang, and X. Liang. 2015. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress. Journal of Physiology and Biochemistry 71: 455–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Witko-Sarsat, V., M. Friedlander, T. Nguyen Khoa, C. Capeillère-Blandin, A.T. Nguyen, S. Canteloup, J.M. Dayer, P. Jungers, T. Drüeke, and B. Descamps-Latscha. 1998. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. Journal of Immunology 161: 2524–32.Google Scholar
  9. 9.
    Iwao, Y., K. Nakajou, R. Nagai, K. Kitamura, M. Anraku, T. Maruyama, and M. Otagiri. 2008. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. American Journal of Physiology. Renal Physiology 295: 1871–80.CrossRefGoogle Scholar
  10. 10.
    Zhou, L.L., W. Cao, C. Xie, J. Tian, Z. Zhou, Q. Zhou, P. Zhu, A. Li, Y. Liu, T. Miyata, F.F. Hou, and J. Nie. 2012. The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney International 82: 759–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, H.Y., F.F. Hou, X. Zhang, P.Y. Chen, S.X. Liu, J.X. Feng, Z.Q. Liu, Y.X. Shan, G.B. Wang, Z.M. Zhou, J.W. Tian, and D. Xie. 2007. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. Journal of the American Society of Nephrology 18: 528–38.CrossRefPubMedGoogle Scholar
  12. 12.
    Shi, X.Y., F.F. Hou, H.X. Niu, G.B. Wang, D. Xie, Z.J. Guo, Z.M. Zhou, F. Yang, J.W. Tian, and X. Zhang. 2008. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149: 1829–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Holmes, R.S., and C.J. Masters. 1970. Epigenetic interconversions of the multiple forms of mouse liver catalase. FEBS Letters 11: 45–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Morris, J.C. 1996. The acid ionization constant of HOCl from 5 to 35°. The Journal of Physical Chemistry 70: 3798–805.CrossRefGoogle Scholar
  15. 15.
    Duran, J., M. Obach, A. Navarro-Sabate, A. Manzano, M. Gómez, J.L. Rosa, F. Ventura, J.C. Perales, and R. Bartrons. 2009. Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. The FEBS Journal 276: 4555–68.CrossRefPubMedGoogle Scholar
  16. 16.
    Capeillère-Blandin, C., V. Gausson, A.T. Nguyen, B. Descamps-Latscha, T. Druek, and V. Witko-Sarsat. 2006. Respective role of uraemic toxins and myeloperoxidase in the uraemic state. Nephrology, Dialysis, Transplantation 21: 1555–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Kumbasar, A., M. Gursu, C. Kaya, S. Ozturk, A. Ergen, A. Kemik, Z. Aydin, S. Uzun, S. Karadag, and R. Kazancioglu. 2012. The effect of different doses and types of intravenous iron on oxidative stress and inflammation in hemodialysis patients. Journal of Nephrology 25: 825–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Anraku, M., K. Kitamura, R. Shintomo, K. Takeuchi, H. Ikeda, J. Nagano, T. Ko, K. Mera, K. Tomita, and M. Otagiri. 2008. Effect of intravenous iron administration frequency on AOPP and inflammatory biomarkers in chronic hemodialysis patients: a pilot study. Clinical Biochemistry 41: 1168–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Prousek, J. 2007. Fenton chemistry in biology and medicine. Pure and Applied Chemistry 79: 2325–38.CrossRefGoogle Scholar
  20. 20.
    Repetto, M.G., N.F. Ferrarotti, and A. Boveris. 2010. The involvement of transition metal ions on iron-dependent lipid peroxidation. Archives of Toxicology 84: 255–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez, F.B., S. Llesuy, and A. Boveris. 1993. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radical Biology & Medicine 10: 93–100.CrossRefGoogle Scholar
  22. 22.
    Chance, B., H. Sies, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59: 527–605.PubMedGoogle Scholar
  23. 23.
    Pahl, H.L. 1990. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–66.CrossRefGoogle Scholar
  24. 24.
    Gilmore, T.D., and F.S. Wolenski. 2012. NF-κB: where did it come from and why? Immunological Reviews 246: 14–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Zheng, S., Z.M. Zhong, and S. Qin. 2013. Advanced oxidation protein products induce inflammatory response in fibroblast-like synoviocytes through NADPH oxidase -dependent activation of NF-κB. Cellular Physiology and Biochemistry 32: 972–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Guo, Z.J., H.X. Niu, F.F. Hou, L. Zhang, N. Fu, R. Nagai, X. Lu, B.H. Chen, Y.X. Shan, J.W. Tian, R.H. Nagaraj, D. Xie, and X. Zhang. 2008. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxidants & Redox Signaling 10: 1699–712.CrossRefGoogle Scholar
  27. 27.
    Cao, W., J. Xu, Z.M. Zhou, G.B. Wang, F.F. Hou, and J. Nie. 2013. Advanced oxidation protein products activate intrarenal renin-angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxidants & Redox Signaling 18: 19–35.CrossRefGoogle Scholar
  28. 28.
    Zhong, Z.M., L. Bai, and J.T. Chen. 2009. Advanced oxidation protein products inhibit proliferation and differentiation of rat osteoblast-like cells via NF-kappaB pathway. Cellular Physiology and Biochemistry 24: 105–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Cai, D., M. Yuan, D.F. Frantz, P.A. Melendez, L. Hansen, J. Lee, and S.E. Shoelson. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nature Medicine 11: 183–90.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Arkan, M.C., A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, and M. Karin. 2005. IKK-beta links inflammation to obesity-induced insulin resistance. Nature Medicine 11: 191–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Marsche, G., S. Frank, A. Hrzenjak, M. Holzer, S. Dirnberger, C. Wadsack, H. Scharnagl, T. Stojakovic, A. Heinemann, and K. Oettl. 2009. Plasma-advanced oxidation protein products are potent high-density lipoprotein receptor antagonists in vivo. Circulation Research 104: 750–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang, J.C., Y. Zhao, S.J. Chen, J. Long, Q.Q. Jia, J.D. Zhai, Q. Zhang, Y. Chen, and H.B. Long. 2013. AOPPs induce MCP-1 expression by increasing ROS-mediated activation of the NF-κB pathway in rat mesangial cells: inhibition by sesquiterpene lactones. Cellular Physiology and Biochemistry 32: 1867–77.CrossRefPubMedGoogle Scholar
  33. 33.
    Santos, R.C., R.N. Moresco, M.A. Peña Rico, A.R. Susperregui, J.L. Rosa, R. Bartrons, F. Ventura, D.N. Mário, S.H. Alves, E. Tatsch, H. Kober, R.O. de Mello, P. Scherer, and J.R. de Oliveira. 2012. Fructose-1,6-bisphosphate protects against Zymosan-induced acute lung injury in mice. Inflammation 35: 1198–203.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guilherme Vargas Bochi
    • 1
    • 2
    • 3
  • Vanessa Dorneles Torbitz
    • 1
  • Roberto Christ Vianna Santos
    • 4
  • Monica Cubillos-Rojas
    • 5
  • José Luis Rosa López
    • 5
  • Anna Maria Siebel
    • 6
  • Patrícia Gomes
    • 7
  • Jarbas Rodrigues de Oliveira
    • 8
  • Rafael Noal Moresco
    • 1
    • 2
  1. 1.Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological AnalysisFederal University of Santa MariaSanta MariaBrazil
  2. 2.Pharmacology Postgraduate Program, Health Sciences CenterFederal University of Santa MariaSanta MariaBrazil
  3. 3.Centro de Ciências da Saúde, Departamento de Análises Clínicas e ToxicológicasUniversidade Federal de Santa MariaSanta MariaBrasil
  4. 4.Research Laboratory of Clinical MicrobiologyFranciscan University CenterSanta MariaBrazil
  5. 5.Unitat Bioquímica i Biologia Molecular, Departament de Ciències Fisiològiques II, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Campus de BellvitgeUniversitat de BarcelonaBarcelonaSpain
  6. 6.Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em CiênciasAmbientaisUniversidade Comunitária da Região de ChapecóChapecóBrazil
  7. 7.Nanosciences Postgraduate ProgramFranciscan University CenterSanta MariaBrazil
  8. 8.Research Laboratory of Cellular Biophysics and InflammationThe Pontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations