Advertisement

Inflammation

, Volume 39, Issue 2, pp 881–890 | Cite as

Increased TMEM16A Involved in Alveolar Fluid Clearance After Lipopolysaccharide Stimulation

  • Honglin Li
  • Xixin Yan
  • Rongqin Li
  • Aili Zhang
  • Zhiyun Niu
  • Zhigang Cai
  • Weisong Duan
  • Xia Li
  • Huiran Zhang
ORIGINAL ARTICLE

Abstract

Transmembrane protein 16A (TMEM16A) regulates a wide variety of cellular activities, including epithelial fluid secretion and maintenance of ion homeostasis. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, is one of the major causes of acute lung injury (ALI). In this study, we investigated the effects of LPS on the expression of TMEM16A in LA795 cells and mouse lung tissue and the potential mechanism. Result: We detected the expression of TMEM16A in LA795 cells and mouse lung tissue by RT-PCR, Western blot, and RNA interference techniques. TMEM16A expression was significantly increased by LPS stimulation in LA795 cells and in mouse lung tissue. Moreover, the LPS-induced TMEM16A expression enhancement in lung tissue was much more prominent in the alveolar epithelial region than in bigger airway epithelial cells. The typical TMEM16A current was recorded, and LPS treatment significantly enhances the current amplitude in LA795 cells. TMEM16A shRNA or TMEM16A inhibitor (T16Ainh-A01) did not affect alveolar fluid clearance (AFC), while co-application of T16Ainh-A01 induced a stronger AFC inhibition than LPS alone. LPS notably and synchronously enhanced Akt phosphorylation (p-Akt) and TMEM16A expression in a time-dependent manner in LA795 cells. Taken together, our results suggest that TMEM16A maybe plays an important role in pathological conditions of LPS-induced ALI as a protective protein.

KEY WORDS

TMEM16A lipopolysaccharide alveolar fluid clearance acute lung injury p-Akt 

Abbreviations

TMEM16A

Transmembrane protein 16A

LPS

Lipopolysaccharide

ALI

Acute lung injury

AFC

Alveolar fluid clearance

p-Akt

Akt phosphorylation

Notes

Acknowledgments

We thank technicians Bin Li M.D. Ph.D. and Ping Xue M.D. for their technical assistance and Prof. Yi Zhang M.D. Ph.D. and Prof. Hailin Zhang M.D. Ph.D. for providing valuable suggestions.

Compliance with Ethical Standards

The use of wild-type C57BL/6 mice was approved by the Animal Care and Ethics Committee of Hebei Medical University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Grants

This work was supported by the National Nature Science Foundation of China (grant no. 81170063) and the Nature Science Foundation of Hebei Province, China (grant no H2012206110).

References

  1. 1.
    Otulakowski, G. 2006. Oxygen and glucocorticoids modulate alpha ENaC mRNA translation in fetal distal lung epithelium. American Journal of Respiratory Cell and Molecular Biology 34: 204–212.CrossRefPubMedGoogle Scholar
  2. 2.
    Berthiaume, Y., and M.A. Matthay. 2007. Alveolar edema fluid clearance and acute lung injury. Respiratory Physiology & Neurobiology 159: 350–359.CrossRefGoogle Scholar
  3. 3.
    Ware, L.B., and M.A. Matthay. 2001. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 163: 1376–1383.CrossRefPubMedGoogle Scholar
  4. 4.
    Caputo, A., E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. 2008. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590–594.CrossRefPubMedGoogle Scholar
  5. 5.
    Schroeder, B.C., T. Cheng, Y.N. Jan, and L.Y. Jan. 2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134: 1019–1029.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang, Y.D., H. Cho, J.Y. Koo, M.H. Tak, Y. Cho, W.S. Shim, S.P. Park, J. Lee, B. Lee, B.M. Kim, R. Raouf, Y.K. Shin, and U. Oh. 2008. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455: 1210–1215.CrossRefPubMedGoogle Scholar
  7. 7.
    Ruffin, M., M. Voland, S. Marie, M. Bonora, E. Blanchard, S. Blouquit-Laye, E. Naline, P. Puyo, P. Le Rouzic, L. Guillot, H. Corvol, A. Clement, and O. Tabary. 2013. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochimica et Biophysica Acta 1832: 2340–2351.CrossRefPubMedGoogle Scholar
  8. 8.
    Huang, W.C., S. Xiao, F. Huang, B.D. Harfe, Y.N. Jan, and L.Y. Jan. 2012. Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74: 179–192.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu, B., J.E. Linley, X. Du, X. Zhang, L. Ooi, H. Zhang, and N. Gamper. 2010. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. Journal of Clinical Investigation 120: 1240–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schreiber, R., I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza, J.R. Martins, and K. Kunzelmann. 2012. Expression and function of epithelial anoctamins. Journal of Biological Chemistry 285: 7838–7845.CrossRefGoogle Scholar
  11. 11.
    Huang, F., J.R. Rock, B.D. Harfe, T. Cheng, X. Huang, Y.N. Jan, and L.Y. Jan. 2009. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proceedings of the National Academy of Sciences of the United States of America 106: 21413–21418.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rock, J.R., W.K. O’Neal, S.E. Gabriel, S.H. Randell, B.D. Harfe, R.C. Boucher, and B.R. Grubb. 2009. Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. Journal of Biological Chemistry 284: 14875–14880.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sheridan, J.T., E.N. Worthington, K. Yu, S.E. Gabriel, H.C. Hartzell, and R. Tarran. 2011. Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A. Journal of Biological Chemistry 286: 1381–1388.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ousingsawat, J., J.R. Martins, R. Schreiber, J.R. Rock, B.D. Harfe, and K. Kunzelmann. 2009. Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. Journal of Biological Chemistry 284: 28698–28703.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huang, F., H. Zhang, M. Wu, H. Yang, M. Kudo, C.J. Peters, P.G. Woodruff, O.D. Solberg, M.L. Donne, X. Huang, D. Sheppard, J.V. Fahy, P.J. Wolters, B.L. Hogan, W.E. Finkbeiner, M. Li, Y.N. Jan, L.Y. Jan, and J.R. Rock. 2012. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proceedings of the National Academy of Sciences of the United States of America 109: 16354–16359.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jung, J., J.H. Nam, H.W. Park, U. Oh, J.H. Yoon, and M.G. Lee. 2013. Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proceedings of the National Academy of Sciences of the United States of America 110: 360–365.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Veit, G., F. Bossard, J. Goepp, A.S. Verkman, L.J. Galietta, J.W. Hanrahan, and G.L. Lukacs. 2012. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Molecular Biology of the Cell 23: 4188–4202.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Forrest, A.S., T.C. Joyce, M.L. Huebner, R.J. Ayon, M. Wiwchar, J. Joyce, N. Freitas, A.J. Davis, L. Ye, D.D. Duan, C.A. Singer, M.L. Valencik, I.A. Greenwood, and N. Leblanc. 2012. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. American Journal of Physiology. Cell Physiology 303: C1229–C1243.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hartzell, C., I. Putzier, and J. Arreola. 2005. Calcium-activated chloride channels. Annual Review of Physiology 67: 719–758.CrossRefPubMedGoogle Scholar
  20. 20.
    Loewen, M.E., and G.W. Forsyth. 2005. Structure and function of CLCA proteins. Physiological Reviews 85: 1061–1092.CrossRefPubMedGoogle Scholar
  21. 21.
    Y. Yang, Y. Cheng, Q.Q. Lian, L. Yang, W. Qi, D.R. Wu, X. Zheng, Y.J. Liu, W.J. Li, S.W. Jin, and F.G. Smith, Contribution of CFTR to alveolar fluid clearance by lipoxin A4 via PI3K/Akt pathway in LPS-induced acute lung injury. Mediators of Inflammation (2013) 862628.Google Scholar
  22. 22.
    Mutlu, G.M., Y. Adir, M. Jameel, A.T. Akhmedov, L. Welch, V. Dumasius, F.J. Meng, J. Zabner, C. Koenig, E.R. Lewis, R. Balagani, G. Traver, J.I. Sznajder, and P. Factor. 2005. Interdependency of beta-adrenergic receptors and CFTR in regulation of alveolar active Na+ transport. Circulation Research 96: 999–1005.CrossRefPubMedGoogle Scholar
  23. 23.
    Factor, P., G.M. Mutlu, L. Chen, J. Mohameed, A.T. Akhmedov, F.J. Meng, T. Jilling, E.R. Lewis, M.D. Johnson, A. Xu, D. Kass, J.M. Martino, A. Bellmeyer, J.S. Albazi, C. Emala, H.T. Lee, L.G. Dobbs, and S. Matalon. 2007. Adenosine regulation of alveolar fluid clearance. Proceedings of the National Academy of Sciences of the United States of America 104: 4083–4088.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Suda, K., M. Tsuruta, J. Eom, C. Or, T. Mui, J.E. Jaw, Y. Li, N. Bai, J. Kim, J. Man, D. Ngan, J. Lee, S. Hansen, S.W. Lee, S. Tam, S.P. Man, S. Van Eeden, and D.D. Sin. 2011. Acute lung injury induces cardiovascular dysfunction: effects of IL-6 and budesonide/formoterol. American Journal of Respiratory Cell and Molecular Biology 45: 510–516.CrossRefPubMedGoogle Scholar
  25. 25.
    Buyck JM1, Verriere V, Benmahdi R, Higgins G, Guery B, Matran R, Harvey BJ, Faure K, Urbach V, P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. Journal of Cystic Fibrosis 12 (2013)60-7.Google Scholar
  26. 26.
    Wilson, A.A., L.W. Kwok, E.L. Porter, J.G. Payne, G.S. McElroy, S.J. Ohle, S.R. Greenhill, M.T. Blahna, K. Yamamoto, J.C. Jean, J.P. Mizgerd, and D.N. Kotton. 2013. Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Molecular Therapy 21: 825–833.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Namkung, W., P.W. Phuan, and A.S. Verkman. 2011. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. Journal of Biological Chemistry 286: 2365–2374.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davis, A.J., J. Shi, H.A. Pritchard, P.S. Chadha, N. Leblanc, G. Vasilikostas, Z. Yao, A.S. Verkman, A.P. Albert, and I.A. Greenwood. 2013. Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh) -A01. British Journal of Pharmacology 168: 773–784.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sun, H., Y. Xia, O. Paudel, X.R. Yang, and J.S. Sham. 2012. Chronic hypoxia-induced upregulation of Ca2+-activated Cl- channel in pulmonary arterial myocytes: a mechanism contributing to enhanced vasoreactivity. Journal of Physiology 590: 3507–3521.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bastarache, J.A., T. Ong, M.A. Matthay, and L.B. Ware. 2011. Alveolar fluid clearance is faster in women with acute lung injury compared to men. Journal of Critical Care 26: 249–256.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Berger, G., J. Guetta, G. Klorin, R. Badarneh, E. Braun, V. Brod, N.A. Saleh, A. Katz, H. Bitterman, and Z.S. Azzam. 2011. Sepsis impairs alveolar epithelial function by downregulating Na-K-ATPase pump. American Journal of Physiology - Lung Cellular and Molecular Physiology 301: L23–L30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Honglin Li
    • 1
  • Xixin Yan
    • 1
  • Rongqin Li
    • 2
  • Aili Zhang
    • 3
  • Zhiyun Niu
    • 4
  • Zhigang Cai
    • 1
  • Weisong Duan
    • 5
  • Xia Li
    • 1
  • Huiran Zhang
    • 1
  1. 1.Department of RespirologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
  2. 2.Department of CentralabThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
  3. 3.Department of RespirologyHebei General HospitalShijiazhuangChina
  4. 4.Department of HematologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
  5. 5.Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina

Personalised recommendations