, Volume 39, Issue 2, pp 735–743 | Cite as

Esculetin Attenuates Th2 and Th17 Responses in an Ovalbumin-Induced Asthmatic Mouse Model

  • Long Hongyan


The purpose of the current study was to investigate the anti-asthmatic effect of esculetin (ES) and explore its potential mechanism with a mouse model of allergic asthma. A total number of 50 mice were randomly assigned to five groups: control, model, dexamethasone (Dex, 2 mg/kg), and ES (20 mg/kg, 40 mg/kg). Mouse asthma model was developed with the sensitization and challenge of ovalbumin (OVA). The levels of IgE in serum, eosinophilia infiltration, Th2/Th17 cytokines, Th17 cell frequency, histological condition, and the protein expressions of RORγt, GATA3 were detected. Our study demonstrated that ES inhibited, OVA-induced eosinophil count, interleukin-4 (IL-4), IL-5, IL-13, and IL-17A levels were recovered in bronchoalveolar lavage fluid. Flow cytometry (FCM) studies revealed that ES substantially inhibited Th17 cells’ percentage. Western blot study also indicated that ES downregulated RORγt and GATA3 expressions. Meanwhile, ES had beneficial effects on the histological alteration. These findings suggested that ES might effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.


esculetin asthma Th2 Th17 RORγt GATA3 



This project was supported by Program for the Human Resources and Social Security Department of Jiangsu Province—“Six Talent Summit” (WSN-061).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Ogulur, I., G. Gurhan, F.E. Kombak, D. Filinte, I. Barlan, and T. Akkoc. 2014. Allogeneic pluripotent stem cells suppress airway inflammation in murine model of acute asthma. International immunopharmacology 22: 31–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Sozanska, B., M. Blaszczyk, N. Pearce, and P. Cullinan. 2014. Atopy and allergic respiratory disease in rural Poland before and after accession to the European Union. The Journal of allergy and clinical immunology 133: 1347–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang, J., T. Zhang, C. Ma, and S. Wang. 2015. Puerarin attenuates airway inflammation by regulation of eotaxin-3. Immunology letters 163: 173–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Shieh, Y.H., H.M. Huang, C.C. Wang, C.C. Lee, C.K. Fan, and Y.L. Lee. 2015. Zerumbone enhances the Th1 response and ameliorates ovalbumin-induced Th2 responses and airway inflammation in mice. International immunopharmacology 24: 383–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Carsin, A., J. Bienvenu, Y. Pacheco, and G. Devouassoux. 2012. Physiopathology of aspirin intolerant asthma. Revue des maladies respiratoires 29: 118–27.CrossRefPubMedGoogle Scholar
  6. 6.
    Tianzhu, Z., Y. Shihai, and D. Juan. 2015. The effects of cordycepin on ovalbumin-induced allergic inflammation by strengthening Treg response and suppressing Th17 responses in ovalbumin-sensitized mice. Inflammation 38: 1036–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen, T., J. Gao, P. Xiang, Y. Chen, J. Ji, P. Xie, et al. 2015. Protective effect of platycodin D on liver injury in alloxan-induced diabetic mice via regulation of Treg/Th17 balance. International immunopharmacology 26: 338–348.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaur, M., S. Reynolds, L.J. Smyth, K. Simpson, S. Hall, and D. Singh. 2014. The effects of corticosteroids on cytokine production from asthma lung lymphocytes. International immunopharmacology 23: 581–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, S.H., J.H. Hong, and Y.C. Lee. 2014. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T-bet, GATA-3, RORgammat and Foxp3 in asthmatic mice. International immunopharmacology 18: 311–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Wakashin, H., K. Hirose, Y. Maezawa, S. Kagami, A. Suto, N. Watanabe, et al. 2008. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. American journal of respiratory and critical care medicine 178: 1023–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu, Y.M., Y. Chen, J.Z. Li, and J.P. Gong. 2014. Up-regulation of Galectin-9 in vivo results in immunosuppressive effects and prolongs survival of liver allograft in rats. Immunology letters 162: 217–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen T, Ma Z, Zhu L, Jiang W, Wei T, Zhou R, et al. 2015. Suppressing receptor-interacting protein 140: a new sight for salidroside to treat cerebral ischemia. Molecular neurobiology. doi: 10.1007/s12035-015-9521-7.
  13. 13.
    Chen T, Wang R, Jiang W, Wang H, Xu A, Lu G, et al. 2015. Protective effect of astragaloside IV against paraquat-induced lung injury in mice by suppressing rho signaling. Inflammation. doi:  10.1007/s10753-015-0272-4.
  14. 14.
    Kim, A.D., X. Han, M.J. Piao, S.R. Hewage, C.L. Hyun, S.J. Cho, et al. 2015. Esculetin induces death of human colon cancer cells via the reactive oxygen species-mediated mitochondrial apoptosis pathway. Environmental toxicology and pharmacology 39: 982–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Hong, S.H., H.K. Jeong, M.H. Han, C. Park, and Y.H. Choi. 2014. Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-kappaB translocation in RAW 264.7 macrophages. Molecular medicine reports 10: 3241–6.PubMedGoogle Scholar
  16. 16.
    Pan, H., B.H. Wang, W. Lv, Y. Jiang, and L. He. 2015. Esculetin induces apoptosis in human gastric cancer cells through a cyclophilin D-mediated mitochondrial permeability transition pore associated with ROS. Chemico-biological interactions 242: 51–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Rzodkiewicz, P., E. Gasinska, S. Maslinski, and M. Bujalska-Zadrozny. 2015. Antinociceptive properties of esculetin in non-inflammatory and inflammatory models of pain in rats. Clinical and experimental pharmacology & physiology 42: 213–9.CrossRefGoogle Scholar
  18. 18.
    Chen, T., Q. Guo, H. Wang, H. Zhang, C. Wang, P. Zhang, et al. 2015. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/Rho kinase/NF-κB pathways in vivo and in vitro. Free Radic Res 49: 1459–68.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, T., Y. Mou, J. Tan, L. Wei, Y. Qiao, T. Wei, et al. 2015. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. International immunopharmacology 25: 55–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Ma, C., Z. Ma, Q. Fu, and S. Ma. 2013. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia 87: 57–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Ma, C., Z. Ma, X.L. Liao, J. Liu, Q. Fu, and S. Ma. 2013. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4(+)CD25(+)Foxp3+ regulatory T cells in ovalbumin-sensitized mice. Journal of ethnopharmacology 148: 755–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang W, Luo F, Lu Q, Liu J, Li P, Wang X, et al. 2016. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chemico-biological interactions 243: 127–34. Google Scholar
  23. 23.
    Song, X., S. Xie, K. Lu, and C. Wang. 2015. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation 38: 485–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Kang, K.S., W. Lee, Y. Jung, J.H. Lee, S. Lee, D.W. Eom, et al. 2014. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice. Journal of agricultural and food chemistry 62: 2069–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Jang, T.Y., C.S. Park, K.S. Kim, M.J. Heo, and Y.H. Kim. 2014. Benzaldehyde suppresses murine allergic asthma and rhinitis. International immunopharmacology 22: 444–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Ma, C., Z. Ma, Q. Fu, and S. Ma. 2014. Anti‐asthmatic effects of baicalin in a mouse model of allergic asthma. Phytotherapy Research 28: 231–237.CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang Q, Yi M, Guo Q, Wang C, Wang H, Meng S, et al. 2015. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-kappaB pathway. International immunopharmacology 29: 370–6.Google Scholar
  28. 28.
    Vroman, H., B. van den Blink, and M. Kool. 2015. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 220: 254–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Ji, N.F., Y.C. Xie, M.S. Zhang, X. Zhao, H. Cheng, H. Wang, et al. 2014. Ligustrazine corrects Th1/Th2 and Treg/Th17 imbalance in a mouse asthma model. International immunopharmacology 21: 76–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang, X., Y. Li, Y. He, T. Li, W. Wang, J. Zhang, et al. 2015. Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. International immunopharmacology 26: 401–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Chung, M.J., R.P. Pandey, J.W. Choi, J.K. Sohng, D.J. Choi, and Y.I. Park. 2015. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. International immunopharmacology 25: 302–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Shin, I.S., M.Y. Lee, E.S. Cho, E.Y. Choi, H.Y. Son, and K.Y. Lee. 2014. Effects of maternal exposure to di(2-ethylhexyl)phthalate (DEHP) during pregnancy on susceptibility to neonatal asthma. Toxicology and applied pharmacology 274: 402–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang T, Yang Z, Yang S, Du J, Wang S. 2015. Immunoregulatory effects of paeoniflorin exerts anti-asthmatic effects via modulation of the Th1/Th2 equilibrium. Inflammation 38: 2017–25.Google Scholar
  34. 34.
    Chen, T., L. Xiao, L. Zhu, S. Ma, T. Yan, and H. Ji. 2015. Anti-asthmatic effects of ginsenoside Rb1 in a mouse model of allergic asthma through relegating Th1/Th2. Inflammation 38: 1814–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Duan MC, Han W, Jin PW, Wei YP, Wei Q, Zhang LM, et al. 2015. Disturbed Th17/Treg balance in patients with non-small cell lung cancer. Inflammation 38: 2156–65.Google Scholar
  36. 36.
    Wang, J., L. Kong, Q. Luo, B. Li, J. Wu, B. Liu, et al. 2014. Dual effects of respiratory syncytial virus infections on airway inflammation by regulation of Th17/Treg responses in ovalbumin-challenged mice. Inflammation 37: 1984–2005.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Central Laboratory, Nanjing Municipal Hospital of Traditional Chinese MedicineThe Third Affiliated Hospital of Nanjing University of T.C.M.NanjingChina

Personalised recommendations