Advertisement

Inflammation

, Volume 39, Issue 1, pp 375–384 | Cite as

Anti-Inflammatory Activity of Tanshinone IIA in LPS-Stimulated RAW264.7 Macrophages via miRNAs and TLR4–NF-κB Pathway

  • Guanwei Fan
  • Xiaorui Jiang
  • Xiaoyan Wu
  • Patrick Asare Fordjour
  • Lin Miao
  • Han Zhang
  • Yan Zhu
  • Xiumei Gao
Original Article

Abstract

Inflammation is a physiological response to infection or injury and involves the innate and adaptive immune system. Tanshinone IIA (Tan IIA) is a well-known flavonoid that elicits an important therapeutic effect by inhibiting inflammatory response. In this study, we examined whether Tan IIA exerts anti-inflammatory activity and investigated the possible mechanisms, including Toll-like receptor 4 (TLR4)–MyD88–nuclear factor kappa B (NF-κB) signaling pathway and microRNA expression in lipopolysaccharide (LPS)-induced RAW264.7 cells. Tan IIA could attenuate the inflammatory reaction via decreasing cytokine, chemokine, and acute-phase protein production, including GM-CSF, sICAM-1, cxcl-1, MIP-1α, and tumor necrosis factor alpha (TNF-α), analyzed by Proteome profile array in LPS-induced RAW264.7 cells. Concurrently, the messenger RNA (mRNA) expressions of IL-1β, TNF-α, and COX-2 were also significantly reduced by Tan IIA. Additionally, Tan IIA decreased LPS-induced NF-κB activation and downregulated TLR4 and MyD88 protein expression levels. We also observed reduced microRNA-155, miR-147, miR-184, miR-29b, and miR-34c expression levels, while LPS-induced microRNA-105, miR-145a, miR-194, miR-383, miR-132, and miR-451a expression levels were upregulated using microRNA (miRNA) qPCR array. Our results indicate that Tan IIA could exert an anti-inflammatory effect on LPS-induced RAW264.7 cells by decreasing TLR4–MyD88–NF-κB signaling pathway and regulating a series of cytokine production and miRNA expression.

KEY WORDS

tanshinone IIA TLR4–NF-κB pathway microRNA inflammatory mediators 

Notes

Acknowledgments

We are grateful for the financial support from the National Key Basic Research Program of China (2012CB518404), the National Natural Science Foundation of China (81273891), the National Science Fund for Distinguished Young Scholars (81125024), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1276).

Conflict of Interest

The authors declare no competing financial interest.

References

  1. 1.
    Zheng, S., Z. Ren, Y. Zhang, and Y. Qiao. 2014. Anti-inflammatory mechanism research of tanshinone IIA by module-based network analysis. Biomed Mater Eng. 24: 3815–3824.PubMedGoogle Scholar
  2. 2.
    You, Z., Y. Xin, Y. Liu, B. Han, L. Zhang, Y. Chen, Y. Chen, L. Gu, H. Gao, and Y. Xuan. 2012. Protective effect of Salvia miltiorrhizae injection on N (G)-nitro-D-arginine induced nitric oxide deficient and oxidative damage in rat kidney. Exp Toxicol Pathol. 64: 453–458.CrossRefPubMedGoogle Scholar
  3. 3.
    Li, Y., Y. Guo, Y. Chen, Y. Wang, Y. You, Q. Yang, X. Weng, Q. Li, X. Zhu, B. Zhou, X. Liu, Z. Gong, and R. Zhang. 2015. Establishment of an interleukin-1β-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis. Mol Med Rep 12: 1665–1676.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Tang, C., H. Xue, C. Bai, R. Fu, and A. Wu. 2010. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine. 17: 1145–1149.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen, Y., X. Wu, S. Yu, X. Lin, J. Wu, L. Li, J. Zhao, and Y. Zhao. 2012. Neuroprotection of Tanshinone IIA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats. PLoS ONE 7: e40165.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    He, H., H. Tang, L. Gao, Y. Wu, Z. Feng, H. Lin, and T. Wu. 2015. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats. Mol Med Rep. 11: 4190–4196.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Xu, M., F.L. Cao, Y.F. Zhang, L. Shan, X.L. Jiang, X.J. An, W. Xu, X.Z. Liu, and X.Y. Wang. 2015. Tanshinone IIA therapeutically reduces LPS-induced acute lung injury by inhibiting inflammation and apoptosis in mice. Acta Pharmacol Sin 36: 179–187.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell. 140: 805–820.CrossRefPubMedGoogle Scholar
  9. 9.
    Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116: 281–297.CrossRefPubMedGoogle Scholar
  10. 10.
    O'Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 10: 111–122.CrossRefPubMedGoogle Scholar
  11. 11.
    Huffaker, T.B., R. Hu, M.C. Runtsch, E. Bake, X. Chen, J. Zhao, J.L. Round, D. Baltimore, and R.M. O'Connell. 2012. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep 2: 1697–1709.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Zhang, Y., R. Yan, and Y. Hu. 2015. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Can J Physiol Pharmacol 93: 253–260.CrossRefPubMedGoogle Scholar
  13. 13.
    Colotta, F., P. Allavena, A. Sica, C. Garlanda, and A. Mantovani. 2009. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30: 1073–1081.CrossRefPubMedGoogle Scholar
  14. 14.
    Tu, J., Y. Xing, Y. Guo, F. Tang, L. Guo, and T. Xi. 2012. TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int Immunopharmacol. 14: 353–361.CrossRefPubMedGoogle Scholar
  15. 15.
    Aviram, M. 2000. Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res. 33: S85–S97.PubMedGoogle Scholar
  16. 16.
    Fan, G.W., X.M. Gao, H. Wang, Y. Zhu, J. Zhang, L.M. Hu, Y.F. Su, L.Y. Kang, and B.L. Zhang. 2009. The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J Steroid Biochem Mol Biol. 113: 275–280.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu, Y., D. Feng, Y. Wang, S. Lin, and L. Xu. 2008. Sodium Tanshinone IIA sulfonate protects mice from ConA-induced hepatitis via inhibiting NF-kappaB and IFN-gamma/STAT1pathways. J Clin Immunol. 28: 512–519.CrossRefPubMedGoogle Scholar
  18. 18.
    Murray, P.J., and T.A. Wynn. 2001. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11: 723–737.CrossRefGoogle Scholar
  19. 19.
    Pascual, G., A.L. Fong, S. Ogawa, A. Gamliel, A.C. Li, V. Perissi, D.W. Rose, T.M. Willson, M.G. Rosenfeld, and C.K. Glass. 2005. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 437: 759–763.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Yuan, Z., M.A. Syed, D. Panchal, D. Rogers, M. Joo, and R.T. Sadikot. 2012. Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. Int J Biochem Cell Biol. 44: 2032–2043.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, X., G. Wang, E.C. Gurley, and H. Zhou. 2014. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One. 9: e107072.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Asirvatham, A.J., C.J. Gregorie, Z. Hu, W.J. Magner, and T.B. Tomasi. 2008. MicroRNA targets in immune genes and the Dicer/argonaute and ARE machinery components. Mol. Immunol. 145: 1995–2006.CrossRefGoogle Scholar
  23. 23.
    Martinez, R.T., F. Louafi, P.S. Friedmann, and T. Sanchez. 2009. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem. 284: 16334–16342.CrossRefGoogle Scholar
  24. 24.
    Yang, L.L., J.Q. Liu, X.Z. Bai, L. Fan, F. Han, W.B. Jia, L.L. Su, J.H. Shi, C.W. Tang, and D.H. Hu. 2014. Acute downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory response. Biochem Biophys Res Commun 453: 153–159.CrossRefPubMedGoogle Scholar
  25. 25.
    Zheng, Y., S. Xiong, P. Jiang, R. Liu, X. Liu, J. Qian, X. Zheng, and Y. Chu. 2012. Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155: a novel anti-inflammation mechanism. Free Radic Biol Med 52: 1307–1317.CrossRefPubMedGoogle Scholar
  26. 26.
    Fu, Y., B. Liu, N. Zhang, Z. Liu, D. Liang, F. Li, Y. Cao, X. Feng, X. Zhang, and Z. Yang. 2013. Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-κB and MAPKs signaling pathways. J Ethnopharmacol. 145: 193–199.CrossRefPubMedGoogle Scholar
  27. 27.
    Murata, T., S. Kohno, C. Ito, M. Itoigawa, A. Sugiura, K. Hikita, and N. Kaneda. 2013. Inhibitory effect of carbazolequinone derivatives on lipopolysaccharide and interferon-γ-induced nitric oxide production in mouse macrophage RAW264.7 cells. J Pharm Pharmacol 65: 1204–1213.CrossRefPubMedGoogle Scholar
  28. 28.
    Saccani, S., S. Pantano, and G. Natoli. 2011. Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 193: 1351–1360.CrossRefGoogle Scholar
  29. 29.
    Botos, I., D.M. Segal, and D.R. Davies. 2011. The structural biology of Toll-like receptors. Structure 19: 447–459.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D.2006.Proc Natl Acad Sci USA .103:12481–12486Google Scholar
  31. 31.
    O'Connell, R.M., K.D. Taganov, M.P. Boldin, G. Cheng, and D. Baltimore. 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104: 1604–1609.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Bandyopadhyay, S., M.E. Long, and L.A. Allen. 2014. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 9: e109525.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guanwei Fan
    • 1
    • 2
  • Xiaorui Jiang
    • 1
    • 2
  • Xiaoyan Wu
    • 1
    • 2
  • Patrick Asare Fordjour
    • 1
    • 2
  • Lin Miao
    • 1
    • 2
  • Han Zhang
    • 1
    • 2
  • Yan Zhu
    • 1
    • 2
  • Xiumei Gao
    • 1
    • 2
  1. 1.State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
  2. 2.Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations